当前位置:主页 > 课后答案 > 复变函数习题答案
复变函数及应用(英文第八版)

《复变函数及应用(英文第八版)》课后习题答案

  • 更新:2021-06-22
  • 大小:22.8 MB
  • 类别:复变函数
  • 作者:James、Ward、Brown/布朗
  • 出版:机械工业出版社
  • 格式:PDF

  • 资源介绍
  • 相关推荐

《复变函数及应用(英文版)(第8版)》初版于20世纪40年代,是经典的本科数学教材之一,对复变函数的教学影响深远,被美国加州理工学院、加州大学伯克利分校、佐治亚理工学院、普度大学、达特茅斯学院、南加州大学等众多名校采用。

《复变函数及应用(英文版)(第8版)》阐述了复变函数的理论及应用,还介绍了留数及保形映射理论在物理、流体及热传导等边值问题中的应用。

新版对原有内容进行了重新组织,增加了更现代的示例和应用,更加方便教学。

目录

  • Preface
  • 1 Complex Numbers
  • Sums and Products
  • Basic Algebraic Properties
  • Further Properties
  • Vectors and Moduli
  • Complex Conjugates
  • Exponential Form
  • Products and Powers in Exponential Form
  • Arguments of Products and Quotients
  • Roots of Complex Numbers
  • Examples
  • Regions in the Complex Plane
  • 2 Analytic Functions
  • Functions of a Complex Variable
  • Mappings
  • Mappings by the Exponential Function
  • Limits
  • Theorems on Limits
  • Limits Involving the Point at Infinity
  • Continuity
  • Derivatives
  • Differentiation Formulas
  • Cauchy-Riemann Equations
  • Sufficient Conditions for Differentiability
  • Polar Coordinates
  • Analytic Functions
  • Examples
  • Harmonic Functions
  • Uniquely Determined Analytic Functions
  • Reflection Principle
  • 3 Elementary Functions
  • The Exponential Function
  • The Logarithmic Function
  • Branches and Derivatives of Logarithms
  • Some Identities Involving Logarithms
  • Complex Exponents
  • Trigonometric Functions
  • Hyperbolic Functions
  • Inverse Trigonometric and Hyperbolic Functions
  • 4 Integrals
  • Derivatives of Functions w(t)
  • Definite Integrals of Functions w(t)
  • Contours
  • Contour Integrals
  • Some Examples
  • Examples with Branch Cuts
  • Upper Bounds for Moduli of Contour Integrals
  • Antiderivatives
  • Proof of the Theorem
  • Cauchy-Goursat Theorem
  • Proof of-the Theorem
  • Simply Connected Domains
  • Multiply Connected Domains
  • Cauchy Integral Formula
  • An Extension of the Cauchy Integral Formula
  • Some Consequences of the Extension
  • Liouvilles Theorem and the Fundamental Theorem of Algebra
  • Maximum Modulus Principle
  • 5 Series
  • Convergence of Sequences
  • Convergence of Series
  • Taylor Series
  • ProofofTaylors Theorem
  • Examples
  • Laurent Series
  • ProofofLaurents 111eorem
  • Examples
  • Absolute and Uniform Convergence of Power Series
  • Continuity of Sums of Power Series
  • Integration and Differentiation ofPower Series
  • Uniqueness of Series Representations
  • Multiplication and Division of Power Series
  • 6 Residues and Poles
  • Isolated Singular Poims
  • Residues
  • Cauchys Residue Theorem
  • Residue at Infinity
  • The Three Types of Isolated Singular Points
  • ResiduCS at POles
  • Examples
  • Zeros of Analytic Functions
  • Zeros and Poles
  • Behavior of Functions Near Isolated Singular Points
  • 7 Applications of Residues
  • Evaluation of Improper Integrals
  • Example
  • Improper Integrals from Fourier Analysis
  • Jordans Lemma
  • Indented Paths
  • An Indentation Around a Branch P0int
  • Integration Along a Branch Cut
  • Definite Integrals Involving Sines and Cosines
  • Argument Principle
  • Rouch6s Theorem
  • Inverse Laplace Transforms
  • Examples
  • 8 Mapping by Elementary Functions
  • Linear Transformations
  • The TransfoITnation w=1/Z
  • Mappings by 1/Z
  • Linear Fractional Transformations
  • An Implicit Form
  • Mappings ofthe Upper HalfPlane
  • The Transformation w=sinZ
  • Mappings by z2 and Branches of z1/2
  • Square Roots of Polynomials
  • Riemann Surfaces
  • Surfaces forRelatedFuncfions
  • 9 Conformal Mapping
  • 10 Applications of Conformal Mapping
  • 11 The Schwarz-Chrstoffer Transformation
  • 12 Integral Formulas of the Poisson Type
  • Appendixes
  • Index

资源下载

资源下载地址1:https://pan.baidu.com/s/1bBl-mMIPkJ1pi8pXExh_AA

相关资源

网友留言