解析卷积神经网络—深度学习实践手册从实用角度着重解析了深度学习中的一类神经网络模型——卷积神经网络,向读者剖析了卷积神经网络的基本部件与工作机理,更重要的是系统性的介绍了深度卷积神经网络在实践应用方面的细节配置与工程经验。笔者希望本书“小而精”,避免像某些国外相关书籍一样浅尝辄止的“大而空”。
这是一本面向中文读者轻量级、偏实用的深度学习工具书,本书内容侧重深度卷积神经网络的基础知识和实践应用。为了使更多不同技术背景的读者通过本书对卷积神经网络和深度学习有所了解,笔者试图尽可能少的使用晦涩的数学公式而尽可能多的使用具体的图表形象表达。本书的受众为对卷积神经网络和深度学习感兴趣的入门者,以及没有机器学习背景但希望能快速掌握该方面知识并将其应用于实际问题的各行从业者。为方便读者,本书附录给出了一些相关数学基础知识简介。
全书共14章,除“绪论”外可分为2个篇章:第一篇“基础理论篇”包括第1~4章,介绍卷积神经网络的基础知识、基本部件、经典结构和模型压缩等基础理论内容;第二篇“实践应用篇”包括第5~14章,介绍深度卷积神经网络自数据准备始,到模型参数初始化、不同网络部件的选择、网络配置、网络模型训练、不平衡数据处理,最终直到模型集成等实践应用技巧和经验。另外,本书基本在每章结束均有对应小结,读者在阅读完每章内容后不妨掩卷回忆,看是否完全掌握此章节重点。对卷积神经网络和深度学习感兴趣的读者可通读全书,做到“理论结合实践”;对于希望将深度卷积神经网络迅速应用来解决实际问题的读者,也可直接参考第二篇的有关内容,做到“有的放矢”。
目录
- 第1章 时代崛起 2
- 第2章 数学理论基础 17
- 第3章 机器学习概要 42
- 第4章 神经网络基础 64
- 进阶篇
- 第5章 前馈型神经网络 88
- 第6章 反馈型神经网络 107
- 第7章 自组织竞争型神经网络 125
- 高阶篇
- 第8章 卷积神经网络 142
- 第9章 循环神经网络 163
- 第10章 深度信念网络 188
- 第11章 生成对抗网络 197
- 第12章 深度强化学习 221