本书是一本优秀的教材,主要分三部分:第一部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。本书的题材是数学教学的共同基础,包含许多数学家的研究成果。
《实分析》(英文版第3版)是一本优秀的教材,主要分三部分:第一部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。《实分析》(英文版第3版)的题材是数学教学的共同基础,包含许多数学家的研究成果。
目录
- Prologue to the Student 1
- I Set Theory 6
- 1 Introduction 6
- 2 Functions 9
- 3 Unions, intersections, and complements 12
- 4 Algebras of sets 17
- 5 The axiom of choice and infinite direct products 19
- 6 Countable sets 20
- 7 Relations and equivalences 23
- 8 Partial orderings and the maximal principle 24
- 9 Well ordering and the countable ordinals 26
- Part One
- THEORY OF FUNCTIONS OF A
- REAL VARIABLE
- 2 The Real Number System 31
- 1 Axioms for the real numbers 31
- 2 The natural and rational numbers as subsets of R 34
- 3 The extended real numbers 36
- 4 Sequences of real numbers 37
- 5 Open and closed sets of real numbers 40
- 6 Continuous functions 47
- 7 Borel sets 52
- 3 Lebesgue Measure 54
- I Introduction 54
- 2 Outer measure 56
- 3 Measurable sets and Lebesgue measure 58
- *4 A nonmeasurable set 64
- 5 Measurable functions 66
- 6 Littlewood's three principles 72
- 4 The Lebesgue Integral 75
- 1 The Riemann integral 75
- 2 The Lebesgue integral of a bounded function over a set of finite
- measure 77
- 3 The integral of a nonnegative function 85
- 4 The general Lebesgue integral 89
- *5 Convergence in measure 95
- S Differentiation and Integration 97
- 1 Differentiation of monotone functions 97
- 2 Functions of bounded variation 102
- 3 Differentiation of an integral 104
- 4 Absolute continuity 108
- 5 Convex functions 113
- 6 The Classical Banach Spaces 118
- 1 The Lp spaces 118
- 2 The Minkowski and Holder inequalities 119
- 3 Convergence and completeness 123
- 4 Approximation in Lp 127
- 5 Bounded linear functionals on the Lp spaces 130
- Part Two
- ABSTRACT SPACES
- 7 Metric Spaces 139
- 1 Introduction 139
- 2 Open and closed sets 141
- 3 Continuous functions and homeomorphisms 144
- 4 Convergence and completeness 146
- 5 Uniform continuity and uniformity 148
- 6 Subspaces 151
- 7 Compact metric spaces 152
- 8 Baire category 158
- 9 Absolute Gs 164
- 10 The Ascoli-Arzela Theorem 167
- 8 Topological Spaces ltl
- I Fundamental notions 171
- 2 Bases and countability 175
- 3 The separation axioms and continuous real-valued
- functions 178
- 4 Connectedness 182
- 5 Products and direct unions of topological spaces 184
- *6 Topological and uniform properties 187
- *7 Nets 188
- 9 Compact and Locally Compact Spaces 190
- I Compact spaces 190
- 2 Countable compactness and the Bolzano-Weierstrass
- property 193
- 3 Products of compact spaces 196
- 4 Locally compact spaces 199
- 5 a-compact spaces 203
- *6 Paracompact spaces 204
- 7 Manifolds 206
- *8 The Stone-Cech compactification 209
- 9 The Stone-Weierstrass Theorem 210
- 10 Banach Spaces 217
- I Introduction 217
- 2 Linear operators 220
- 3 Linear functionals and the Hahn-Banach Theorem 222
- 4 The Closed Graph Theorem 224
- 5 Topological vector spaces 233
- 6 Weak topologies 236
- 7 Convexity 239
- 8 Hilbert space 245
- Part Three
- GENERAL MEASURE AND INTEGRATION
- THEORY
- 11 Measure and Integration 253
- 1 Measure spaces 253
- 2 Measurable functions 259
- 3 Integration 263
- 4 General Convergence Theorems 268
- 5 Signed measures 270
- 6 The Radon-Nikodym Theorem 276
- 7 The Lp-spaces 282
- 12 Measure and Outer Measure 288
- 1 Outer measure and measurability 288
- 2 The Extension Theorem 291
- 3 The Lebesgue-Stieltjes integral 299
- 4 Product measures 303
- 5 Integral operators 313
- *6 Inner measure 317
- *7 Extension by sets of measure zero 325
- 8 Caratheodory outer measure 326
- 9 Hausdorff measure 329
- 13 Measure and Topology 331
- 1 Baire sets and Borel sets 331
- 2 The regularity of Baire and Borel measures 337
- 3 The construction of Borel measures 345
- 4 Positive linear functionals and Borel measures 352
- 5 Bounded linear functionals on C(X) 355
- 14 Invariant Measures 361
- 1 Homogeneous spaces 361
- 2 Topological equicontinuity 362
- 3 The existence ofinvariant measures 365
- 4 Topological groups 370
- 5 Group actions and quotient spaces 376
- 6 Unicity ofinvariant measures 378
- 7 Groups ofdiffeomorphisms 388
- 15 Mappings of Measure Spaces 392
- 1 Point mappings and set mappings 392
- 2 Boolean algebras 394
- 3 Measure algebras 398
- 4 Borel equivalences 401
- 5 Borel measures on complete separable metric spaces 406
- 6 Set mappings and point mappings on complete separable
- metric spaces 412
- 7 The isometries of Lp 415
- 16 The Daniell Integral 419
- 1 Introduction 419
- 2 The Extension Theorem 422
- 3 Uniqueness 427
- 4 Measurability and measure 429
- Bibliography 435
- Index of Symbols 437
- Subject Index 439