当前位置:主页 > 课后答案 > 实分析习题答案
实分析(第三版)

《实分析(第三版)》课后习题答案

  • 更新:2021-08-05
  • 大小:12.3 MB
  • 类别:实分析
  • 作者:[美]罗伊登
  • 出版:机械工业出版社
  • 格式:PDF

  • 资源介绍
  • 相关推荐

本书是一本优秀的教材,主要分三部分:第一部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。本书的题材是数学教学的共同基础,包含许多数学家的研究成果。

《实分析》(英文版第3版)是一本优秀的教材,主要分三部分:第一部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。《实分析》(英文版第3版)的题材是数学教学的共同基础,包含许多数学家的研究成果。

目录

  • Prologue to the Student 1
  • I Set Theory 6
  • 1 Introduction 6
  • 2 Functions 9
  • 3 Unions, intersections, and complements 12
  • 4 Algebras of sets 17
  • 5 The axiom of choice and infinite direct products 19
  • 6 Countable sets 20
  • 7 Relations and equivalences 23
  • 8 Partial orderings and the maximal principle 24
  • 9 Well ordering and the countable ordinals 26
  • Part One
  • THEORY OF FUNCTIONS OF A
  • REAL VARIABLE
  • 2 The Real Number System 31
  • 1 Axioms for the real numbers 31
  • 2 The natural and rational numbers as subsets of R 34
  • 3 The extended real numbers 36
  • 4 Sequences of real numbers 37
  • 5 Open and closed sets of real numbers 40
  • 6 Continuous functions 47
  • 7 Borel sets 52
  • 3 Lebesgue Measure 54
  • I Introduction 54
  • 2 Outer measure 56
  • 3 Measurable sets and Lebesgue measure 58
  • *4 A nonmeasurable set 64
  • 5 Measurable functions 66
  • 6 Littlewood's three principles 72
  • 4 The Lebesgue Integral 75
  • 1 The Riemann integral 75
  • 2 The Lebesgue integral of a bounded function over a set of finite
  • measure 77
  • 3 The integral of a nonnegative function 85
  • 4 The general Lebesgue integral 89
  • *5 Convergence in measure 95
  • S Differentiation and Integration 97
  • 1 Differentiation of monotone functions 97
  • 2 Functions of bounded variation 102
  • 3 Differentiation of an integral 104
  • 4 Absolute continuity 108
  • 5 Convex functions 113
  • 6 The Classical Banach Spaces 118
  • 1 The Lp spaces 118
  • 2 The Minkowski and Holder inequalities 119
  • 3 Convergence and completeness 123
  • 4 Approximation in Lp 127
  • 5 Bounded linear functionals on the Lp spaces 130
  • Part Two
  • ABSTRACT SPACES
  • 7 Metric Spaces 139
  • 1 Introduction 139
  • 2 Open and closed sets 141
  • 3 Continuous functions and homeomorphisms 144
  • 4 Convergence and completeness 146
  • 5 Uniform continuity and uniformity 148
  • 6 Subspaces 151
  • 7 Compact metric spaces 152
  • 8 Baire category 158
  • 9 Absolute Gs 164
  • 10 The Ascoli-Arzela Theorem 167
  • 8 Topological Spaces ltl
  • I Fundamental notions 171
  • 2 Bases and countability 175
  • 3 The separation axioms and continuous real-valued
  • functions 178
  • 4 Connectedness 182
  • 5 Products and direct unions of topological spaces 184
  • *6 Topological and uniform properties 187
  • *7 Nets 188
  • 9 Compact and Locally Compact Spaces 190
  • I Compact spaces 190
  • 2 Countable compactness and the Bolzano-Weierstrass
  • property 193
  • 3 Products of compact spaces 196
  • 4 Locally compact spaces 199
  • 5 a-compact spaces 203
  • *6 Paracompact spaces 204
  • 7 Manifolds 206
  • *8 The Stone-Cech compactification 209
  • 9 The Stone-Weierstrass Theorem 210
  • 10 Banach Spaces 217
  • I Introduction 217
  • 2 Linear operators 220
  • 3 Linear functionals and the Hahn-Banach Theorem 222
  • 4 The Closed Graph Theorem 224
  • 5 Topological vector spaces 233
  • 6 Weak topologies 236
  • 7 Convexity 239
  • 8 Hilbert space 245
  • Part Three
  • GENERAL MEASURE AND INTEGRATION
  • THEORY
  • 11 Measure and Integration 253
  • 1 Measure spaces 253
  • 2 Measurable functions 259
  • 3 Integration 263
  • 4 General Convergence Theorems 268
  • 5 Signed measures 270
  • 6 The Radon-Nikodym Theorem 276
  • 7 The Lp-spaces 282
  • 12 Measure and Outer Measure 288
  • 1 Outer measure and measurability 288
  • 2 The Extension Theorem 291
  • 3 The Lebesgue-Stieltjes integral 299
  • 4 Product measures 303
  • 5 Integral operators 313
  • *6 Inner measure 317
  • *7 Extension by sets of measure zero 325
  • 8 Caratheodory outer measure 326
  • 9 Hausdorff measure 329
  • 13 Measure and Topology 331
  • 1 Baire sets and Borel sets 331
  • 2 The regularity of Baire and Borel measures 337
  • 3 The construction of Borel measures 345
  • 4 Positive linear functionals and Borel measures 352
  • 5 Bounded linear functionals on C(X) 355
  • 14 Invariant Measures 361
  • 1 Homogeneous spaces 361
  • 2 Topological equicontinuity 362
  • 3 The existence ofinvariant measures 365
  • 4 Topological groups 370
  • 5 Group actions and quotient spaces 376
  • 6 Unicity ofinvariant measures 378
  • 7 Groups ofdiffeomorphisms 388
  • 15 Mappings of Measure Spaces 392
  • 1 Point mappings and set mappings 392
  • 2 Boolean algebras 394
  • 3 Measure algebras 398
  • 4 Borel equivalences 401
  • 5 Borel measures on complete separable metric spaces 406
  • 6 Set mappings and point mappings on complete separable
  • metric spaces 412
  • 7 The isometries of Lp 415
  • 16 The Daniell Integral 419
  • 1 Introduction 419
  • 2 The Extension Theorem 422
  • 3 Uniqueness 427
  • 4 Measurability and measure 429
  • Bibliography 435
  • Index of Symbols 437
  • Subject Index 439

资源下载

资源下载地址1:https://pan.baidu.com/s/1addFsVNBPbAfMgByNN2zCg

相关资源

网友留言