《跟着迪哥学Python:数据分析与机器学习实战》是由人民邮电出版社出版的一本关于Python方面的书籍,作者是唐宇迪,主要介绍了关于Python、数据分析、机器学习方面的知识内容,目前在Python类书籍综合评分为:9.6分。
书籍介绍
《跟着迪哥学Python:数据分析与机器学习实战》结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。 全书共20章,大致分为4个部分。*部分介绍了Python的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机、聚类算法等;第3部分介绍了深度学习中的常用算法,包括神经网络、卷积神经网络、递归神经网络;第4部分是项目实战,基于真实数据集,将算法模型应用到实际业务中。 本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
目录
- 第 1章 人工智能入学指南
- 1.1 AI时代首选Python
- 1.1.1 Python的特点
- 1.1.2 Python该怎么学
- 1.2 人工智能的核心——机器学习
- 1.2.1 什么是机器学习
- 1.2.2 机器学习的流程
- 1.2.3 机器学习该怎么学
- 1.3 环境配置
- 1.3.1 Anaconda大礼包
- 1.3.2 Jupyter Notebook
- 1.3.3 上哪找资源
- 本章总结
- 第 2章 科学计算库(Numpy)
- 2.1 Numpy的基本操作
- 2.1.1 Array数组
- 2.1.2 数组特性
- 2.1.3 数组属性操作
- 2.2 索引与切片
- 2.2.1 数值索引
- 2.2.2 bool索引
- 2.3 数据类型与数值计算
- 2.3.1 数据类型
- 2.3.2 复制与赋值
- 2.3.3 数值运算
- 2.3.4 矩阵乘法
- 2.4 常用功能模块
- 2.4.1 排序操作
- 2.4.2 数组形状操作
- 2.4.3 数组的拼接
- 2.4.4 创建数组函数
- 2.4.5 随机模块
- 2.4.6 文件读写
- 第3章 数据分析处理库(Pandas)
- 3.1 数据预处理
- 3.1.1 数据读取
- 3.1.2 DataFrame结构
- 3.1.3 数据索引
- 3.1.4 创建DataFrame
- 3.1.5 Series操作
- 3.2 数据分析
- 3.2.1 统计分析
- 3.2.2 pivot数据透视表
- 3.2.3 groupby操作
- 3.3 常用函数操作
- 3.3.1 Merge操作
- 3.3.2 排序操作
- 3.3.3 缺失值处理
- 3.3.4 apply自定义函数
- 3.3.5 时间操作
- 3.3.6 绘图操作
- 3.4 大数据处理技巧
- 3.4.1 数值类型转换
- 3.4.2 属性类型转换
- 第4章 数据可视化库(Matplotlib)
- 4.1 常规绘图方法
- 4.1.1 细节设置
- 4.1.2 子图与标注
- 4.1.3 风格设置
- 4.2 常用图表绘制
- 4.2.1条形图
- 4.2.2 盒图
- 4.2.3 直方图与散点图
- 4.2.4 3D图
- 4.2.5 布局设置
- 第5章 回归算法
- 5.1 线性回归算法
- 5.1.1 线性回归方程
- 5.1.2 误差项分析
- 5.1.3 似然函数求解
- 5.1.4 线性回归求解
- 5.2 梯度下降算法
- 5.2.1 下山方向选择
- 5.2.2 梯度下降优化
- 5.2.3 梯度下降策略对比
- 5.2.4 学习率对结果的影响
- 5.3 逻辑回归算法
- 5.3.1 原理推导
- 5.3.2 逻辑回归求解
- 第6章 逻辑回归项目实战——信用卡欺诈检测
- 6.1 数据分析与预处理
- 6.1.1 数据读取与分析
- 6.1.2 样本不均衡解决方案
- 6.1.3 特征标准化
- 6.2 下采样方案
- 6.2.1 交叉验证
- 6.2.2 模型评估方法
- 6.2.3 正则化惩罚
- 6.3 逻辑回归模型
- 6.3.1 参数对结果的影响
- 6.3.2 混淆矩阵
- 6.3.3 分类阈值对结果的影响
- 6.4 过采样方案
- 6.4.1 SMOTE数据生成策略
- 6.4.2 过采样应用效果
- 项目总结
- 第7章 决策树
- 7.1 决策树原理
- 7.1.1 决策树的基本概念
- 7.1.2 衡量标准
- 7.1.3 信息增益
- 7.1.4 决策树构造实例
- 7.1.5 连续值问题
- 7.1.6 信息增益率
- 7.1.7 回归问题求解
- 7.2 决策树剪枝策略
- 7.2.1 剪枝策略
- 7.2.2 决策树算法涉及参数
- 第8章 集成算法
- 8.1 bagging算法
- 8.1.1 并行的集成
- 8.1.2 随机森林
- 8.2 boosting算法
- 8.2.1 串行的集成
- 8.2.2 Adaboost算法
- 8.3 stacking模型
- 第9章 随机森林项目实战——气温预测
- 9.1 随机森林建模
- 9.1.1 特征可视化与预处理
- 9.1.2 随机森林回归模型
- 9.1.3 树模型可视化方法
- 9.1.4 特征重要性
- 9.2 数据与特征对结果影响分析
- 9.2.1 特征工程
- 9.2.2 数据量对结果影响分析
- 9.2.2 特征数量对结果影响分析
- 9.3 模型调参
- 9.3.1 随机参数选择
- 9.3.2 网络参数搜索
- 第 10章 特征工程
- 10.1 数值特征
- 10.1.1 字符串编码
- 10.1.2 二值与多项式特征
- 10.1.3 连续值离散化
- 10.1.4 对数与时间变换
- 10.2 文本特征
- 10.2.1 词袋模型
- 10.2.2 常用文本特征构造方法
- 10.3 论文与benchmark
- 第 11章: 贝叶斯算法项目实战——新闻分类
- 11.1 贝叶斯算法
- 11.1.1 贝叶斯公式
- 11.1.2 拼写纠错实例
- 11.1.3 垃圾邮件分类
- 11.2 新闻分类任务
- 11.2.1 数据清洗
- 11.2.1 TF-IDF关键词提取
- 第 12章 支持向量机
- 12.1 支持向量机工作原理
- 12.1.1 支持向量机要解决的问题
- 12.1.2 距离与标签定义
- 12.1.3 目标函数
- 12.1.4 拉格朗日乘子法
- 12.2 支持向量的作用
- 12.2.1 支持向量机求解
- 12.2.2 支持向量的作用
- 12.3 支持向量机涉及参数
- 12.3.1 软间隔参数选择
- 12.3.2 核函数的作用
- 12.4 案例:参数对结果的影响
- 12.4.1 SVM基本模型
- 12.4.2 核函数变换
- 12.4.3 SVM参数选择
- 12.4.4 SVM人脸识别实例
- 第 13章 推荐系统
- 13.1 推荐系统的应用
- 13.2 协同过滤算法
- 13.2.1 基于用户的协同过滤
- 13.2.1 基于商品的协同过滤
- 13.3 隐语义模型
- 13.3.1 矩阵分解思想
- 13.3.2 隐语义模型求解
- 13.3.3 评估方法
- 第 14章 推荐系统项目实战——打造音乐推荐系统
- 14.1 数据集清洗
- 14.1.1 统计分析
- 14.1.2 数据集整合
- 14.2 基于相似度的推荐
- 14.2.1 排行榜推荐
- 14.2.2 基于歌曲相似度的推荐
- 14.3 基于矩阵分解的推荐
- 14.3.1 奇异值分解
- 14.3.2 使用SVD算法进行音乐推荐
- 第 15章 降维算法
- 15.1 线性判别分析
- 15.1.1 降维原理概述
- 15.1.2 优化的目标
- 15.1.3 线性判别分析求解
- 15.1.4 Python实现线性判别分析降维
- 15.2 主成分分析
- 15.2.1 PCA降维基本知识点
- 15.2.2 PCA优化目标求解
- 15.2.3 Python实现PCA降维
- 第 16章 聚类算法
- 16.1 K-means算法
- 16.1.1 聚类的基本特性
- 16.1.2 K-means算法原理
- 16.1.2 K-means涉及参数
- 16.1.3 K-means聚类效果与优缺点
- 16.2 DBSCAN聚类算法
- 16.2.1 DBSCAN算法概述
- 10.2.2 DBSCAN工作流程
- 16.2.3 半径对结果的影响
- 16.3 聚类实例
- 第 17章 神经网络
- 17.1 神经网络必备基础
- 17.1.1 神经网络概述
- 17.1.2 计算机眼中的图像
- 17.1.3 得分函数
- 17.1.4 损失函数
- 17.1.5 反向传播
- 17.2 神经网络整体架构
- 11.2.1 整体框架
- 17.2.2 神经元的作用
- 17.2.3 正则化
- 17.2.4 激活函数
- 17.3 网络调优细节
- 17.3.1 数据预处理
- 17.3.2 Drop-Out
- 17.3.3 数据增强
- 17.3.4 网络结构设计
- 第 18章 TensorFlow实战
- 18.1 TensorFlow基本操作
- 18.1.1 Tensorflow特性
- 18.1.2 Tensorflow基本操作
- 18.1.3 Tensorflow实现回归任务
- 18.2 搭建神经网络进行手写字体识别
- 第 19章 卷积神经网络
- 19.1 卷积操作原理
- 19.1.1 卷积神经网络应用
- 19.1.2 卷积操作流程
- 19.1.3 卷积计算方法
- 19.1.4 卷积涉及参数
- 19.1.5 池化层
- 19.2 经典网络架构
- 19.2.1 卷积神经网络整体架构
- 19.2.2 AlexNet网络
- 19.2.3 VGG网络
- 19.2.4 ResNet网络
- 19.3 TensorFlow实战卷积神经网络
- 第 20章 神经网络项目实战——影评情感分析
- 20.1 递归神经网络
- 20.1.1 RNN网络架构
- 20.1.2 LSTM网络
- 20.2 影评数据特征工程
- 20.2.1 词向量
- 20.2.2 数据特征制作
- 20.3 构建RNN模型