《离散数学及其应用》(Discrete Mathematics and Its Applications)是经典的离散数学教材,为全球500多所大学广为采用作为指定教材。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构和算法设计。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明,各种练习和题目,以及丰富的历史资料和网站资源。本书适用于数学、计算机科学、计算机工程等专业的学生。
目录
- preface iv
- about theauthor xiii
- the companion website xiv
- to the studentxvi
- list of symbols xix
- 1 the foundations:logic and proofs
- 1.1 propositional logic
- 1.2 applications of propositional logic
- 1.3 propositional equivalences
- 1.4 predicates andquantifiers
- 1.5 nested quantifiers
- 1.6 rules of inference
- 1.7 introduction to proofs
- 1.8 proofmethods and strategy
- end-of-chaptermaterial-
- 2 basic structures:sets,functions,sequences,sums,andmatrices
- 2.1 sets
- 2.2 set operations
- 2.3 functions
- .2.4 sequences and summations
- 2.5 cardinality of sets
- 2.6 matrices
- end-of-chaptermaterial
- 3 algorithms
- 3.1 algorithms
- 3.2 the growth of functions
- 3.3 complexity of algofithms
- end-of-chapter material
- 4 number theory and cryptography
- 4.1 divisibilitv andmodular arithmetic
- 4.2 integer representations andalgorithms
- 4.3 primesand greatest common divisors
- 4.4 solving congruences
- 4.5 applications of congruences
- 4.6 cryptography
- end-of-chapter material
- 5 induction and recursion
- 5.1 mathematical induction
- 5.2 strong induction and well-ordering
- 5.3 recursive definitions and structural induction
- 5.4 recursive algorithms
- 5.5 program correctness
- end-of-chapter material
- 6 counting
- 6.1 tlle basics of counting
- 6.2 the pigeonhole principle
- 6.3 permutations and combinations
- 6.4 binomial coefficients and identities
- 6.5 generalized permutations and combinations
- 6.6 generating permutations and combinations
- end-of-chapter material
- 7 discrete probability
- 7.1 an introduction to discrete probability
- 7.2 probability theory
- 7.3 bayes’theorem
- 7.4 expected value and variance
- end-of-chapter material
- 8 advanced counring technigues
- 8.1 applications of recurrence relations
- 8.2 solving linear recurrence relations
- 8.3 divide-and-conquer algorithms and recurrencerelations
- 8.4 generating functions
- 8.5 inclusion-exclusion
- 8.6 applications of inclusion-exclusion
- end—of-chapter material
- 9 relations
- 9.1 relations and their properties
- 9.2 n-ary relations and theirapplications
- 9.3 representing relations
- 9.4 closures of relations
- 9.5 equivalence relations
- 9.6 partial orderings
- end-of-chapter material
- 10 graphs
- 10.1 graphs andgraphmodels
- 10.2 graph terminology and special types of graphs
- 10.3 representing graphs and graph isomorphism
- 10.4 connectivity
- 10.5 eulerandhamiltonpaths
- 10.6 shortest.pathproblems
- 10.7 planargraphs
- 10.8 graphcoloring
- end-of-chapter material
- 11 trees
- 11.1 introduction to trees
- 11.2 applications of trees
- 11.3 tree travcrsal
- 11.4 spanning trees
- 11.5 minimum spanning trees
- end-of-chapter material
- 12 boolean algebra
- 12.1 boolean functions
- 12.2 representing boolean functions
- 12.3 logic gates
- 12.4 minimization of circuits
- end-of-chapter material
- 13 modeling cornputation
- 13.1 languagesand grammars
- 13.2 finite-state machines with output
- 13.3 finite-state machines with no output
- 13.4 languagerecognition
- 13.5 turing machines
- end-of-chapter material