当前位置:主页 > 计算机电子书 > 大数据分析 > 大数据挖掘下载
大数据挖掘:系统方法与实例分析

大数据挖掘:系统方法与实例分析 PDF 完整超清版

  • 更新:2021-11-29
  • 大小:52.95MB
  • 类别:大数据挖掘
  • 作者:周英、卓金武、卞月青
  • 出版:机械工业出版社
  • 格式:PDF

  • 资源介绍
  • 相关推荐

本书是大数据挖掘领域的扛鼎之作,由全球科学计算领域的领导者MathWorks(MATLAB公司)官方的资深数据挖掘专家撰写,MathWorks官方及多位专家联袂推荐。它从技术、方法、案例和最佳实践4个维度对如何系统、深入掌握大数据挖掘提供了详尽的讲解。技术:不仅讲解了大数据挖掘的原理、过程、工具,还讲解了大数据的准备、处理、与探索;方法:既深入地讲解了关联规则方法、回归方法、分类方法、聚类方法、预测方法、诊断方法等6大类数据挖掘主体方法,又重点讲解了时间序列方法和智能优化方法两种数据挖掘中常用的方法;案例:详细地再现了来自银行、证券、机械、矿业、生命科学和社会科学等6大领域的经典案例,不仅有案例的实现过程,而且还有案例原理和预备知识的的讲解;最佳实践:首先总结了数据挖掘中确定挖掘、应用技术以及如何平衡的艺术,然后总结了数据挖掘的项目管理和团队管理的艺术。

目录

  • 序言
  • 前言
  • 第—篇基础篇
  • 第1章认识大数据挖掘
  • 1.1大数据与数据挖掘
  • 1.1.1何为大数据
  • 1.1.2大数据的价值
  • 1.1.3大数据与数据挖掘的关系
  • 1.2数据挖掘的概念和原理
  • 1.2.1什么是数据挖掘
  • 1.2.2数据挖掘的原理
  • 1.3数据挖掘的内容
  • 1.3.1关联
  • 1.3.2回归
  • 1.3.3分类
  • 1.3.4聚类
  • 1.3.5预测
  • 1.3.6诊断
  • 1.4数据挖掘的应用领域
  • 1.4.1零售业
  • 1.4.2银行业
  • 1.4.3证券业
  • 1.4.4能源业
  • 1.4.5医疗行业
  • 1.4.6通信行业
  • 1.4.7汽车行业
  • 1.4.8公共事业
  • 1.5大数据挖掘的要点
  • 1.6小结
  • 参考文献
  • 2.1数据挖掘过程概述
  • 2.2挖掘目标的定义
  • 2.3数据的准备
  • 2.4数据的探索
  • 2.5模型的建立
  • 2.6模型的评估
  • 2.7模型的部署
  • 2.8工具的比较与选择
  • 2.9小结
  • 参考文献
  • 第3章MATLAB数据挖掘快速入门
  • 3.1MATLAB快速入门
  • 3.1.11MATLAB概要
  • 3,1.2MATLAB的功能
  • 3,1.3快速入门实例
  • 3.1.4入门后的提高
  • 3.2MATLAB常用技巧
  • 3.3MATLAB开发模式
  • 3.4MATLAB数据挖掘实例
  • 3.5MATLAB集成数据挖掘工具
  • 3.5.1分类学习机简介
  • 3.5.2交互探索算法的方式
  • 3.5.3MATLAB分类学习机应用实例
  • 3.6小结
  • 第二篇技术篇
  • 第4章数据的准备
  • 4.1数据的收集
  • 4.1.1认识数据
  • 4.1.2数据挖掘的数据源
  • 4.1.3数据抽样
  • 4,1.4金融行业的数据源
  • 4.1.5从雅虎获取交易数据
  • 4.1.6从大智慧获取财务数据
  • 4.1.7从Wind获取高质量数据
  • 4.2数据质量分析
  • 4.2.1数据质量分析的必要性
  • 4.2.2数据质量分析的目的
  • 4.2.3数据质量分析的内容
  • 4.2.4数据质量分析方法
  • 4.2.5数据质量分析的结果及应用
  • 4.3数据预处理
  • 4.3.1为什么需要数据预处理
  • 4.3.2数据预处理的方法
  • 4.3.3数据清洗
  • 4.3.4数据集成
  • 4.3.5数据归约
  • 4.3.6数据变换
  • 4.4小结
  • 参考文献
  • 第5章数据的探索
  • 5.1衍生变量
  • 5.1.1衍生变量的定义
  • 5.1.2变量衍生的原则和方法
  • 5.1.3常用的股票衍生变量
  • 5.1.4评价型衍生变量
  • 5.1.5衍生变量的数据收集与集成
  • 5.2数据的统计
  • 5.2.1基本描述性统计
  • 5.2.2分布描述性统计
  • 5.3数据可视化
  • 5.3.1基本可视化方法
  • 5.3.2数据分布形状可视化
  • 5.3.3数据关联情况可视化
  • 5.3.4数据分组可视化
  • 5.4样本选择
  • 5.4.1样本选择的方法
  • 5.4.2样本选择应用实例
  • 5.5数据降维
  • 5.5.1主成分分析基本原理
  • 5.5.2PCA应用案例:企业综合
  • 实力排序
  • 5.5.3相关系数降维
  • 5.6小结
  • 参考文献
  • 第6章关联规则方法
  • 6.1关联规则概要
  • 6.1.1关联规则的背景
  • 6.1.2关联规则的基本概念
  • 6.1.3关联规则的分类
  • 6.1.4关联规则挖掘常用算法
  • 6.2Apriori算法
  • 6.2.1Apriori算法基本思想
  • 6.2.2Apriori算法步骤
  • 6.2.3Apriori算法实例
  • 6.2.4Apriori算法程序实现
  • 6.2.5Aprion算法优缺点
  • 6.3FP—Growth算法
  • 6.3.1FP—Growth算法步骤
  • 6.3.2FP—Growth算法实例
  • 6.3.3FP—Growth算法优缺点
  • 6.4应用实例:行业关联选股法
  • 6.5小结
  • 参考文献
  • 第7章数据回归方法
  • 7.1一元回归
  • 7.1.1一元线性回归
  • 7.1.2一元非线性回归
  • 7.1.3一元多项式回归
  • 7.2多元回归
  • 7.2.1多元线性回归
  • 7.2.2多元多项式回归
  • 7.3逐步回归
  • 7.3.1逐步回归基本思想
  • 7.3.2逐步回归步骤
  • 7.3.3逐步回归的MATLAB方法
  • 7.4Logistic回归
  • 7.4.1Logistic模型
  • 7.4.2Logistic回归实例
  • 7.5应用实例:多因子选股模型的实现
  • 7.5.1多因子模型基本思想
  • 7.5.2多因子模型的实现
  • 7.6小结
  • 参考文献
  • 第8章分类方法
  • 8.1分类方法概要
  • 8.1.1分类的概念
  • 8.1.2分类的原理
  • 8.1.3常用的分类方法
  • 8.2K—近邻
  • 8.2.1K—近邻原理
  • 8.2.2K—近邻实例
  • 8.2.3K—近邻特点
  • 8.3贝叶斯分类
  • 8.3.1贝叶斯分类原理
  • 8.3.2朴素贝叶斯分类原理
  • 8.3.3朴素贝叶斯分类实例
  • 8.3.4朴素贝叶斯特点
  • 8.4神经网络
  • 8.4.1神经网络原理
  • 8.4.2神经网络实例
  • 8.4.3神经网络特点
  • 8.5逻辑斯蒂
  • 8.5.1逻辑斯蒂原理
  • 8.5.2逻辑斯蒂实例
  • 8.5.3逻辑斯蒂特点
  • 8.6判别分析
  • 8.6.1判别分析原理
  • 8.6.2判别分析实例
  • 8.6.3判别分析特点
  • 8.7支持向量机
  • 8.7.1支持向量杌基本思想
  • 8.7.2支持向量机理论基础
  • 8.7.3支持向量机实例
  • 8.7.4支持向量机特点
  • 8.8决策树
  • 8.8.1决策树的基本概念
  • 8.8.2决策树的构建步骤
  • 8.8.3决策树实例
  • 8.8.4决策树特点
  • 8.9分类的评判
  • 8.9.1正确率
  • 8.9.2ROC曲线
  • 8.10应用实例:分类选股法
  • 8.10.1案例背景
  • 8.10.2实现方法
  • 8.11延伸阅读:其他分类方法
  • 8.12小结
  • 参考文献
  • 第9章聚类方法
  • 9.1聚类方法概要
  • 9.1.1聚类的概念
  • 9.1.2类的度量方法
  • 9.1.3聚类方法的应用场景
  • 9.1.4聚类方法分类
  • 9.2K—means方法
  • 9.2.1K—means原理和步骤
  • 9.2.2K—means实例1:自主编程
  • 9.2.3K—means实例2:集成函数
  • 9.2.4K—means特点
  • 9.3层次聚类
  • 9.3.1层次聚类原理和步骤
  • 9.3.2层次聚类实例
  • 9.3.3层次聚类特点
  • 9.4神经网络聚类
  • 9.4.1神经网络聚类原理和步骤
  • 9.4.2神经网络聚类实例
  • 9.4.3神经网络聚类特点
  • 9.5模糊C.均值方法
  • 9.5.1FCM原理和步骤
  • 9.5.2FCM应用实例
  • 9.5.3FCM算法特点
  • 9.6高斯混合聚类方法
  • 9.6.1高斯混合聚类原理和步骤
  • 9.6.2高斯混合聚类实例
  • 9.6.3高斯混合聚类特点
  • 9.7类别数的确定方法
  • 9.7.1原理
  • 9.7.2实例
  • 9.8应用实例:股票聚类分池
  • 9.8.1聚类目标和数据描述
  • 9.8.2实现过程
  • 9.8.3结果及分析
  • 9.9延伸阅读
  • 9.9.1目前聚类分析研究的主要内容
  • 9.9.2SOM智能聚类算法
  • 9.10小结
  • 参考文献
  • 第10章预测方法
  • 10.1预测方法概要
  • 10.1.1预测的概念
  • 10.1.2预测的基本原理
  • 10.1.3预测的准确度评价及
  • 影响因素
  • 10.1.4常用的预测方法
  • 10.2灰色预测
  • 102.1灰色预测原理
  • 10.22灰色预测的实例
  • 10.3马尔科夫预测
  • 10.3.1马尔科夫预测原理
  • 10.32马尔科夫过程的特性
  • 10.3.3马尔科夫预测实例
  • 104应用实例:大盘走势预测
  • 10.4.1数据的选取及模型的建立
  • 10.42预测过程
  • 10.4.3预测结果与分析
  • 10.5小结
  • 参考文献
  • 第11章诊断方法
  • 11.1离群点诊断概要
  • 11.1.1离群点诊断的定义
  • 11.1.2离群点诊断的作用
  • 11.1.3离群点诊断方法分类
  • 11.2基于统计的离群点诊断
  • 11.2.1理论基础
  • 11.2.2应用实例
  • 11.2.3优点与缺点
  • 11.3基于距离的离群点诊断
  • 11.3.1理论基础
  • 11.3.2应用实例
  • 11.3.3优点与缺点
  • 11.4基于密度的离群点挖掘
  • 11.4.1理论基础
  • 11.4.2应用实例
  • 11.4.3优点与缺点
  • 11.5基于聚类的离群点挖掘
  • 11.5.1理论基础
  • 11.5.2应用实例
  • 11.5.3优点与缺点
  • 11.6应用实例:离群点诊断股票买卖择时
  • 11.7延伸阅读:新兴的离群点挖掘方法
  • 11.7.1基于关联的离群点挖掘
  • 11.7.2基于粗糙集的离群点挖掘
  • 11.7.3基于人工神经网络的离群点挖掘
  • 11.8小结
  • 参考文献
  • 第12章时间序列方法
  • 12.1时间序列基本概念
  • 12.1.1时间序列的定义
  • 12.1.2时间序列的组成因素
  • 12.1.3时间序列的分类
  • 12.1.4时间序列分析方法
  • 12.2平稳时间序列分析方法
  • 12.2.1移动平均法
  • 12.2.2指数平滑法
  • 12.3季节指数预测法
  • 12.3.1季节性水平模型
  • 12.3.2季节性趋势模型
  • 12.4时间序列模型
  • 12.4.1ARMA模型
  • 12.4.2ARIMA模型
  • 12.4.3ARCH型
  • 12.4.4GARCH模型
  • 12.5应用实例:基于时间序列的股票预测
  • 12.6小结
  • 参考文献
  • 第13章智能优化方法
  • 13.1智能优化方法概要
  • 13.1.1智能优化方法的概念
  • 13.1.2常用的智能优化方法
  • 13.2遗传算法
  • 13.2.1遗传算法的原理
  • 13.2.2遗传算法的步骤
  • 13.2.3遗传算法实例
  • 13.2.4遗传算法的特点
  • 13.3模拟退火算法
  • 13.3.1模拟退火算法的原理
  • 13.3.2模拟退火算法的步骤
  • 13.3.3模拟退火算法实例
  • 13.3.4模拟退火算法的特点
  • 13.4延伸阅读:其他智能方法
  • 13.4.1粒子群算法
  • 13.4.2蚁群算法
  • 13.5小结
  • 参考文献
  • ……
  • 第三篇项目篇
  • 第四篇理念篇
     

资源下载

资源下载地址1:https://pan.baidu.com/s/1SW7HkGw3RGiqX4ljyR3ong

相关资源

网友留言