当前位置:主页 > python教程 > pandas数据聚合与分组运算

pandas数据聚合与分组运算的实现

发布:2023-03-10 10:00:01 59


为网友们分享了相关的编程文章,网友相芦雪根据主题投稿了本篇教程内容,涉及到pandas、数据聚合、pandas、分组运算、pandas数据聚合与分组运算相关内容,已被121网友关注,内容中涉及的知识点可以在下方直接下载获取。

pandas数据聚合与分组运算

数据聚合与分组运算

对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节。在将数据集加载、融合、准备好之后,通常就是计算分组统计或生成透视表。pandas提供了一个灵活高效的gruopby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。

关系型数据库和SQL(Structured Query Language,结构化查询语言)能够如此流行的原因之一就是其能够方便地对数据进行连接、过滤、转换和聚合。但是,像SQL这样的查询语言所能执行的分组运算的种类很有限。在本章中你将会看到,由于Python和pandas强大的表达能力,我们可以执行复杂得多的分组运算(利用任何可以接受pandas对象或NumPy数组的函数)。

分组与聚合的原理

在Pandas中,分组是指使用特定的条件将原数据划分为多个组,聚合在这里指的是,对每个分组中的数据执行某些操作,最后将计算的结果进行整合。

分组与聚合的过程大概分为以下三步:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1DcdPD1Z-1674035110873)(10数据聚合与分组运算.assets/image-20210402111015748.png)]

通过groupby()方法将数据拆分成组

groupby(by=None, axis=0, level=None, as_index=True, sort=True,group_keys=True, squeeze=False, observed=False, **kwargs)

  • by:用于确定进行分组的依据。
  • axis:表示分组轴的方向。
  • sort:表示是否对分组标签进行排序,接收布尔值,默认为True。

按列名进行分组

# 通过列名进行分组
import pandas as pd
df = pd.DataFrame({"key":['c','b','c','a','b','b','a','c','a'],
                "data":[2,4,6,8,10,1,14,16,19]
})
print(df)
'''
  key  data
0   c     2
1   b     4
2   c     6
3   a     8
4   b    10
5   b     1
6   a    14
7   c    16
8   a    19
'''
# 按照key列进行分组
print(df.groupby(by='key'))
'''
'''
group_obj = df.groupby('key')
for i in group_obj:
    print(i)
'''
('a',   key  data
3   a     8
6   a    14
8   a    19)
('b',   key  data
1   b     4
4   b    10
5   b     1)
('c',   key  data
0   c     2
2   c     6
7   c    16)
'''

按Series对象进行分组

如果Series对象与Pandas对象的索引长度不相同时,则只会将具有相同索引的部分数据进行分组

import numpy as np
import pandas as pd
df = pd.DataFrame({
    'key1':['A','A','B','B','A'],
    'key2':['one','two','one','two','one'],
    'data1':['2','3','4','6','8'],
    'data2':['3','5','6','3','7']
})
print(df)
'''
  key1 key2 data1 data2
0    A  one     2     3
1    A  two     3     5
2    B  one     4     6
3    B  two     6     3
4    A  one     8     7
'''
se = pd.Series(['a','b','c','a','b'])
print(se)
'''
0    a
1    b
2    c
3    a
4    b
dtype: object
'''
group_obj = df.groupby(se) # 定义series对象进行分组
for i in group_obj:
    print(i)
'''
('a',   key  data
0   c     2
3   a     8)
('b',   key  data
1   b     4
4   b    10)
('c',   key  data
2   c     6)
'''

按字典进行分组

可以将这个字典传给groupby,来构造数组

# 通过字典进行分组
from pandas import DataFrame,Series
num_df = DataFrame({'a':[1,2,3,4,5],
                   'b':[6,7,8,9,10],
                   'c':[11,12,13,14,15],
                   'd':[5,4,3,2,1],
                   'e':[10,9,8,7,6]})
print(num_df)
'''
   a   b   c  d   e
0  1   6  11  5  10
1  2   7  12  4   9
2  3   8  13  3   8
3  4   9  14  2   7
4  5  10  15  1   6
'''
# 定义分组规则
mapping = {'a':'第一组','b':'第二组','c':'第一组','d':'第三组','e':'第二组'}
by_column = num_df.groupby(mapping, axis=1)
for i in by_column:
    print(i)
'''
('第一组',    a   c
0  1  11
1  2  12
2  3  13
3  4  14
4  5  15)
('第三组',    d
0  5
1  4
2  3
3  2
4  1)
('第二组',     b   e
0   6  10
1   7   9
2   8   8
3   9   7
4  10   6)
'''

按函数进行分组

将函数作为分组键会更加灵活,任何一个被当做分组键的函数都会在各个索引值上被调用一次,返回的值会被用作分组名称。

使用内置函数len进行分组 groupby_obj = df.groupby(len)

比起使用字典或Series,使用Python函数是一种更原生的方法定义分组映射。任何被当做分组键的函数都会在各个索引值上被调用一次,其返回值就会被用作分组名称。你可以计算一个字符串长度的数组,更简单的方法是传入len函数:

key_list = ['a', 'a', 'a', 'b', 'b']
num_df.groupby([len, key_list]).min()

到此这篇关于pandas数据聚合与分组运算的实现的文章就介绍到这了,更多相关pandas数据聚合与分组运算内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


相关文章

  • Pandas处理DataFrame稀疏数据及维度不匹配数据分析详解

    发布:2023-04-07

    这篇文章主要为大家介绍了Pandas处理DataFrame稀疏数据及维度不匹配数据分析详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪


  • pandas进行数据的交集与并集方式的合并方法详解

    发布:2019-07-29

    今天小编就为大家分享一篇pandas进行数据的交集与并集方式的数据合并方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧


  • Pandas筛选某列过滤的方法

    发布:2023-03-07

    本文主要介绍了Pandas筛选某列过滤的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • 实例讲述Python中pandas模块使用方法

    发布:2020-03-14

    这篇文章主要介绍了Python数据分析模块pandas用法,结合实例形式详细分析了Python数据分析模块pandas的功能、常见用法及相关操作注意事项,需要的朋友可以参考下


  • pandas DataFrame行或列的删除方法代码

    发布:2020-01-06

    这篇文章主要介绍了pandas DataFrame行或列的删除方法的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学


  • pandas.DataFrame中提取特定类型dtype的列

    发布:2023-03-27

    本文主要介绍了pandas.DataFrame中提取特定类型dtype的列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas小数位数精度如何处理实例讲解

    发布:2019-11-11

    今天小编就为大家分享一篇pandas 小数位数 精度的处理方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧


  • Pandas中根据条件替换列中的值的四种方式

    发布:2023-03-06

    本文主要介绍了Pandas中根据条件替换列中的值的四种方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


网友讨论