当前位置:主页 > python教程 > Pandas DataFrame数据分析

Pandas处理DataFrame稀疏数据及维度不匹配数据分析详解

发布:2023-04-07 14:15:01 59


给大家整理一篇相关的编程文章,网友宁安怡根据主题投稿了本篇教程内容,涉及到Pandas、DataFrame数据分析、Pandas、DataFrame维度不匹配、Pandas DataFrame数据分析相关内容,已被529网友关注,相关难点技巧可以阅读下方的电子资料。

Pandas DataFrame数据分析

前言

众所周知我们获取的第一手数据往往都是比较杂乱无章的,这些文件保存一般都是csv文件或者是excel文件,读取转换成DataFrame还有可能因为缺少列索引或者是各类数据维度不相等而报错。读取成功为DataFrame仍然有很多问题存在,比如列索引缺失,众多NaN数据以及合并计算问题等,这篇文章将具体解决此场景下的内容。

一、索引缺失

读取缺失量较大的数据时,索引并不是能完全覆盖到的。存在着列索引缺失的问题,这是一个比较头疼的问题,使得我们后面的数据特征无法使用:

这是针对机器学习的数据集特征,面对这种情况我们可以通过重新设置索引的方式,倘若特征之间是有规律的话,例如上表5列以后的数据每列的列索引都是features的话那么我们可以通过reindex的方法给它补全索引:

def deal_defect(df,n):
    df_defect=df.iloc[:,n:]
    m=4
    list_columns=[]
    for i in range(df_defect.shape[1]):
        list_columns.append('features%d'%m)
        m=m+1
    df_defect.columns=list_columns
    df_all=pd.concat([df.iloc[:,:n],df_defect],axis=1)
    return df_all
deal_defect(df,5)

二、负值取正

若是要对整个DataFrame的值都取负数,并不需要挨个列都转再使用abs函数,读取的DataFrame一般都是object类型不能直接使用abs,需要使用astype将dataframe类型转换:

当数据中带有NaN时是不能直接转int的:

df_fill=df.astype('int')
IntCastingNaNError: Cannot convert non-finite values (NA or inf) to integer

但是我们转换为float的时候原始数据集又出现了后面带.0的情况:

这里我们要使用到fillna函数,先转为float取绝对值之后再填充为空值之后替换为-1,这样一来-1的位置就是缺失值的位置,以便于我们识别:

def fill_conver(df):
    df_fill=df.astype('float')
    df_fill=abs(df_fill)
    df_fill=df_fill.fillna('')
    df_fill=df_fill.replace('',-1)
    df_fill=df_fill.astype(int)
    return df_fill
fill_conver(df)

三、提取数值

既然有很多空值我们可以采取侧缺将低于一定比例的数据去除,这部分在上篇缺失值处理文章已经谈到这里不再说明。我们最常遇到的情况就是需要处理空值只提去出相应标签下的数值,这里涉及到列索引的选择和合并操作。例如我们只需要特征列偶数列的数值:

def get_features(df):
    list_all_link=[]
    df=df.iloc[:,2:]
    for i in range(df.shape[0]):
        #flag为控制外层循环开关
        flag=1
        for j in range(df.shape[1]):
            if(flag==0):
                break
            if(j%2==0):
                if(df.iloc[i:i+1,j].item()==-1):
                    flag=0
                else:
                    list_all_link.append(list(df.iloc[i:i+1,j]))
    return list_all_link
get_features(df)

四、提取唯一值

如果我们需要只需要取到的数列中的唯一值,需要对数据集进行处理,可以使用ravel()和unique()函数。此时我们还需要注意删掉-1:

def unique_df(df):
    df_features=df.iloc[:,2:]
    unique_series=pd.Series(pd.Series(df_features.iloc[:,[i%2==0 for i in range(len(df_features.columns))]].values.ravel()).unique())
    list_series=list(unique_series.values)
    return list_series
unique_list=unique_df(df)
unique_list.remove(-1)
unique_list

以上就是Pandas处理DataFrame稀疏数据及维度不匹配数据分析详解的详细内容,更多关于Pandas DataFrame数据分析的资料请关注码农之家其它相关文章!


相关文章

  • pandas.DataFrame Series排序的使用(sort_values,sort_index)

    发布:2023-03-28

    本文主要介绍了pandas.DataFrame Series排序的使用(sort_values,sort_index),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Pandas中describe()函数的具体使用

    发布:2023-03-07

    本文主要介绍了Pandas中describe()函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas 实现 in 和 not in 的用法及使用心得

    发布:2023-03-03

    pandas按条件筛选数据时,除了使用query()方法,还可以使用isin和对isin取反进行条件筛选,今天通过本文给大家介绍pandas 实现 in 和 not in 的用法及使用心得,感兴趣的朋友跟随小编一起看看吧


  • Python Pandas数据结构知识点总结

    发布:2020-04-29

    这篇文章主要介绍了Python Pandas数据结构简单介绍的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下


  • 使用Pandas实现MySQL窗口函数的解决方法

    发布:2023-03-29

    本文主要介绍 MySQL 中的窗口函数row_number()、lead()/lag()、rank()/dense_rank()、first_value()、count()、sum()如何使用pandas实现,同时二者又有什么区别,感兴趣的朋友一起看看吧


  • Pandas快速合并多张excel表格的两种方法

    发布:2023-04-26

    最近学习了python遍历目录,下面这篇文章主要给大家介绍了关于Pandas快速合并多张excel表格的两种方法,文中通过实例代码介绍的非常详细,需要的朋友可以参考下


  • Pandas.DataFrame时间序列数据处理的实现

    发布:2023-03-28

    本文主要介绍了Pandas.DataFrame时间序列数据处理的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Pandas条件筛选与组合筛选的使用

    发布:2023-03-06

    本文主要介绍了Pandas条件筛选与组合筛选的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


网友讨论