当前位置:主页 > python教程 > Pandas 条件替换列值

Pandas中根据条件替换列中的值的四种方式

发布:2023-03-06 10:30:01 59


给大家整理一篇相关的编程文章,网友邵欣悦根据主题投稿了本篇教程内容,涉及到Pandas、条件替换列值、Pandas、条件替换、Pandas 条件替换列值相关内容,已被151网友关注,涉猎到的知识点内容可以在下方电子书获得。

Pandas 条件替换列值

方法1:使用dataframe.loc[]函数

通过这个方法,我们可以用一个条件或一个布尔数组来访问一组行或列。如果我们可以访问它,我们也可以操作它的值,是的!这是我们的第一个方法,通过pandas中的dataframe.loc[]函数,我们可以访问一个列并通过一个条件改变它的值。

语法:df.loc[ df["column_name"] == "some_value", "column_name" ] = "value" 

some_value = 需要被替换的值   value = 应该被放置的值。

 示例: 我们要把性别栏中的所有 “男性 “改为1。

import pandas as pd
import numpy as np
  
# data
data= {
    'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
    'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
    'math score': [50, 100, 70, 80, 75, 40],
    'test preparation': ['none', 'completed', 'none', 'completed',
                         'completed', 'none'],
}
  
# 创建一个 Dataframe 对象
df = pd.DataFrame(data)
  
# 条件应用
df.loc[df["gender"] == "male", "gender"] = 1

 输出:

使用dataframe.loc[]函数

方法2:使用NumPy.where()函数

NumPy是一个非常流行的库,用于2D和3D数组的计算。它为我们提供了一个非常有用的方法where()来访问有条件的特定行或列。我们也可以用这个函数来改变某一列的特定值。 语法: df[“column_name”] = np.where(df[“column_name”]==”some_value”, value_if_true, value_if_false) 

 示例: 这个numpy.where()函数应该写上条件,如果条件为真,后面是值,如果条件为假,则是一个值。现在,我们要把性别栏中的所有 “女性 “改为0,”男性 “改为1。

import pandas as pd
import numpy as np
  
# data
data= {
    'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
    'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
    'math score': [50, 100, 70, 80, 75, 40],
    'test preparation': ['none', 'completed', 'none', 'completed',
                         'completed', 'none'],
}
  
# 创建一个 Dataframe 对象
df = pd.DataFrame(data)
  
 # 条件应用
df["gender"] = np.where(df["gender"] == "female", 0, 1)

输出:

使用NumPy.where()函数

方法3:使用pandas掩码函数

Pandas的掩蔽函数是为了用一个条件替换任何行或列的值。

语法: df[‘column_name’].mask( df[‘column_name’] == ‘some_value’, value , inplace=True )

示例:使用这个屏蔽条件,将性别栏中所有的 “女性 “改为0。

import pandas as pd
import numpy as np
  
# data
data= {
    'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
    'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
    'math score': [50, 100, 70, 80, 75, 40],
    'test preparation': ['none', 'completed', 'none', 'completed', 
                         'completed', 'none'],
}
  
# 创建一个 Dataframe 对象
df = pd.DataFrame(data)
  
# 条件应用 1
df['gender'].mask(df['gender'] == 'female', 0, inplace=True)
  
# 条件应用 2
#df['math score'].mask(df['math score'] >=60 ,'good', inplace=True)

输出:

使用pandas掩码函数

方法4:替换包含指定字符的字符串

语法 : data["列名"].mask(data.列名.str.contains(".*?某字符串"), "替换目标字符串", inplace=True) 

import pandas as pd
import numpy as np
  
# data
data= {
    'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
    'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
    'math score': [50, 100, '良70', 80, '良75', 40],
    'test preparation': ['none', 'completed', 'none', 'completed', 
                         'completed', 'none'],
}
  
# 创建一个 Dataframe 对象
df = pd.DataFrame(data)
  
# 条件应用 
data["math score"].mask(data.math score.str.contains(".*?良"), "良好", inplace=True) 

使用pandas掩码函数

到此这篇关于Pandas中根据条件替换列中的值的四种方式的文章就介绍到这了,更多相关Pandas 条件替换列值内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


相关文章

  • Python使用Pandas处理测试数据的方法

    发布:2023-04-02

    Pandas是一个功能极其强大的数据分析库,可以高效地操作各种数据集,这篇文章主要介绍了Python自动化测试-使用Pandas来高效处理测试数据,需要的朋友可以参考下


  • pandas赋值失败问题解决

    发布:2021-05-24

    这篇文章主要介绍了详解pandas赋值失败问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Pandas分组与排序的实现

    Pandas分组与排序的实现

    发布:2022-07-11

    为网友们分享了关于Pandas的教程,这篇文章主要介绍了Pandas分组与排序的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas读取Excel批量转换时间戳的实践

    发布:2023-03-22

    本文主要介绍了pandas读取Excel批量转换时间戳的实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas归一化与反归一化操作实现

    发布:2023-03-10

    本文主要介绍了pandas归一化与反归一化操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Pandas替换NaN值的方法实现

    发布:2023-03-06

    本文主要介绍了Pandas替换NaN值的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas数据归一化以和行删除例程的具体办法介绍

    发布:2019-09-01

    今天小编就为大家分享一篇pandas 数据归一化以及行删除例程的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧


  • Pandas.DataFrame行和列的转置的实现

    发布:2023-03-29

    本文主要介绍了Pandas.DataFrame行和列的转置的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


网友讨论