当前位置:主页 > python教程 > Python计算纳什均衡

基于Python实现计算纳什均衡的示例详解

发布:2023-04-18 17:00:02 59


给寻找编程代码教程的朋友们精选了相关的编程文章,网友许映安根据主题投稿了本篇教程内容,涉及到Python计算纳什均衡、Python、纳什均衡、Python计算纳什均衡相关内容,已被361网友关注,内容中涉及的知识点可以在下方直接下载获取。

Python计算纳什均衡

纳什均衡是一种博弈论中的概念,它描述了一种平衡状态,其中每个参与者都不能通过独立改变其决策来提高自己的利益。

在 Python 中,可以使用一些第三方库,例如 Gambit 或 Nashpy,来计算纳什均衡。

Nashpy 库计算两个参与者的纳什均衡

注意安装 nashpy 库。

import nashpy as nash
import numpy as np

A = np.array([[1, -1], [-1, 1]])
game = nash.Game(A)
equilibrium = game.vertex_enumeration()
print("纳什均衡是: ", next(equilibrium))

在上述代码中,先导入了 nashpy 库,并使用其中的 Game() 函数创建一个游戏。

然后,使用 vertex_enumeration() 方法找到纳什均衡,并使用 next() 函数从生成器中提取第一个均衡。

手动计算纳什均衡

下面是使用原生 Python 手动计算纳什均衡的代码示例:

import numpy as np
from scipy.optimize import linprog


def nash_equilibrium(payoff_matrix_a, payoff_matrix_b):
    """
    计算二人非合作博弈的纳什均衡。
    """
    num_actions_a = payoff_matrix_a.shape[1]
    num_actions_b = payoff_matrix_b.shape[1]

    # 定义优化问题
    c = -np.ones(num_actions_a + num_actions_b)
    A = np.zeros((num_actions_b, num_actions_a + num_actions_b))
    for j in range(num_actions_b):
        A[j, :num_actions_a] = -payoff_matrix_b[:, j]
        A[j, num_actions_a:] = np.ones(num_actions_b)

    b = np.zeros(num_actions_b)
    bounds = [(0, None) for _ in range(num_actions_a + num_actions_b)]

    # 解决优化问题
    res = linprog(c, A_ub=A, b_ub=b, bounds=bounds, method='simplex')

    # 提取混合策略
    mixed_strategy_a = res.x[:num_actions_a]
    mixed_strategy_b = res.x[num_actions_a:]

    return mixed_strategy_a, mixed_strategy_b



payoff_matrix_a = np.array([[1, 5], [0, 5]])
payoff_matrix_b = np.array([[3, 7], [2, 3]])
mixed_strategy_a, mixed_strategy_b = nash_equilibrium(payoff_matrix_a, payoff_matrix_b)

print("混合策略 A:", mixed_strategy_a)
print("混合策略 B:", mixed_strategy_b)

该代码仅适用于 2 名玩家的博弈,如果您需要计算多名玩家的博弈,则需要进行一些修改。

代码运行结果如下。

上述代码使用 scipy 库的 linprog() 函数来解决博弈矩阵。它将约束条件和目标函数作为输入,返回纳什均衡策略。

使用了 PuLP 库计算纳什均衡

下面是简单的代码实现:

from pulp import *

# 创建一个线性规划模型
prob = LpProblem("纳什均衡", LpMaximize)

# 创建玩家1的策略变量
p1 = LpVariable("p1", 0, 1)

# 创建玩家2的策略变量
p2 = LpVariable("p2", 0, 1)

# 设置目标函数
prob += 5 * p1 + 4 * p2, "Total Utility"

# 设置约束条件
prob += p1 + 2 * p2 <= 1, "玩家 1 约束条件"
prob += 3 * p1 + 2 * p2 <= 2, "玩家 2 约束条件"

# 解决问题
prob.solve()

# 输出结果
print("玩家1策略: ", value(p1))
print("玩家2策略: ", value(p2))

以上方法是通过线性规划计算纳什均衡的方法,学习的时候可以自行设置约束条件。

总结

在 Python 中,纳什均衡可以通过解方程组、对均衡点的搜索等方式来计算。

常用的方法是使用 scipy 库中的 linprog() 函数,注意提前安装 scipy 库。

如果不使用第三方库,则可以通过编写算法来计算纳什均衡,例如使用解方程组和对均衡点的搜索。但这需要较复杂的数学知识和编程技巧,也就是要数学功底扎实。

到此这篇关于基于Python实现计算纳什均衡的示例详解的文章就介绍到这了,更多相关Python计算纳什均衡内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


参考资料

相关文章

  • Python安装Graphviz超详细图文教程

    发布:2023-03-28

    这篇文章主要介绍了Python安装Graphviz超详细教程,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下


  • Python实现设置显示屏分辨率

    发布:2023-03-05

    这篇文章主要为大家详细介绍了Python如何调用win32库实现分辨率获取和读写,文中的示例代码讲解详细,具有一定的借鉴价值,需要的可以参考下


  • python pandas写入excel文件的方法示例

    发布:2022-06-15

    给网友朋友们带来一篇关于pandas的教程,这篇文章主要介绍了python pandas写入excel文件的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Python第三方库undetected_chromedriver的使用

    发布:2023-03-04

    这篇文章主要给大家介绍了关于Python第三方库undetected_chromedriver的使用方法,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下


  • 实现Python字符串反转的4种方法

    发布:2020-01-07

    这篇文章主要介绍了Python实现字符串反转的常用方法,结合具体实例形式分析了4种常用的Python字符串反转操作技巧,需要的朋友可以参考下


  • 代码示例介绍Python文件的操作

    发布:2019-09-01

    ​本篇文章给大家带来的内容是关于Python文件操作的相关知识介绍(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。


  • 如何使用python+tkinter实现学生管理系统

    发布:2020-02-03

    这篇文章主要为大家详细介绍了python+tkinter实现学生管理系统,具有一定的参考价值,感兴趣的小伙伴们可以参考一下


  • python实现可变变量名方法详解

    发布:2022-10-10

    为网友们分享了关于python的教程,在本篇文章里小编给大家整理了关于python实现可变变量名的相关知识点内容以及实例代码,需要的朋友们参考下。


网友讨论