当前位置:主页 > python教程 > Python Pandas 处理测试数据

Python使用Pandas处理测试数据的方法

发布:2023-04-02 16:35:01 59


为找教程的网友们整理了相关的编程文章,网友郭颖初根据主题投稿了本篇教程内容,涉及到Python、Pandas、处理测试数据、Python Pandas、自动化测试、Python Pandas 处理测试数据相关内容,已被230网友关注,涉猎到的知识点内容可以在下方电子书获得。

Python Pandas 处理测试数据

Python自动化测试-使用Pandas来高效处理测试数据

一、思考

1.Pandas是什么?

  • 功能极其强大的数据分析库
  • 可以高效地操作各种数据集
    • csv格式的文件
    • Excel文件
    • HTML文件
    • XML格式的文件
    • JSON格式的文件
    • 数据库操作

2.经典面试题

通过面试题引出主题,读者可以思考,如果你遇到这题,该如何解答呢?

二、使用pandas来操作Excel文件

1.安装

a.通过Pypi来安装

pip install pandas

b.通过源码来安装

git clone git://github.com/pydata/pandas.gitcd pandaspython setup.py install

2.按列读取数据

案例中的lemon_cases.xlsx文件内容如下所示:

import pandas as pd
 
# 读excel文件
# 返回一个DataFrame对象,多维数据结构
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')
print(df)
 
 
# 1.读取一列数据
# df["title"] 返回一个Series对象,记录title这列的数据
print(df["title"])
 
# Series对象能转化为任何序列类型和dict字典类型
print(list(df['title']))    # 转化为列表
# title为DataFrame对象的属性
print(list(df.title))    # 转化为列表
print(tuple(df['title']))   # 转化为元组
print(dict(df['title']))    # 转化为字典,key为数字索引
 
# 2.读取某一个单元格数据
# 不包括表头,指定列名和行索引
print(df['title'][0])   # title列,不包括表头的第一个单元格
 
# 3.读取多列数据
print(df[["title", "actual"]])

3.按行读取数据

import pandas as pd
 
# 读excel文件
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')   # 返回一个DataFrame对象,多维数据结构
print(df)
 
 
# 1.读取一行数据
# 不包括表头,第一个索引值为0
# 获取第一行数据,可以将其转化为list、tuple、dict
print(list(df.iloc[0]))  # 转成列表
print(tuple(df.iloc[0]))  # 转成元组
print(dict(df.iloc[0]))  # 转成字典
print(dict(df.iloc[-1]))  # 也支持负索引
 
# 2.读取某一个单元格数据
# 不包括表头,指定行索引和列索引(或者列名)
print(df.iloc[0]["l_data"])   # 指定行索引和列名
print(df.iloc[0][2])    # 指定行索引和列索引
 
# 3.读取多行数据
print(df.iloc[0:3])

4.iloc和loc方法

import pandas as pd
 
# 读excel文件
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')   # 返回一个DataFrame对象,多维数据结构
print(df)
 
 
# 1.iloc方法
# iloc使用数字索引来读取行和列
# 也可以使用iloc方法读取某一列
print(df.iloc[:, 0])
print(df.iloc[:, 1])
print(df.iloc[:, -1])
 
# 读取多列
print(df.iloc[:, 0:3])
 
# 读取多行多列
print(df.iloc[2:4, 1:4])
print(df.iloc[[1, 3], [2, 4]])
 
# 2.loc方法
# loc方法,基于标签名或者索引名来选择
print(df.loc[1:2, "title"])  			# 多行一列
print(df.loc[1:2, "title":"r_data"])    # 多列多行
 
# 基于布尔类型来选择
print(df["r_data"] > 5)  # 某一列中大于5的数值为True,否则为False
print(df.loc[df["r_data"] > 5])  # 把r_data列中大于5,所在的行选择出来
print(df.loc[df["r_data"] > 5, "r_data":"actual"])  # 把r_data到actual列选择出来

5.读取所有数据

import pandas as pd
 
# 读excel文件
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')   # 返回一个DataFrame对象,多维数据结构
print(df)
 
 
# 读取的数据为嵌套列表的列表类型,此方法不推荐使用
print(df.values)
 
# 嵌套字典的列表
datas_list = []
for r_index in df.index:
    datas_list.append(df.iloc[r_index].to_dict())
 
print(datas_list)

6.写入数据

import pandas as pd
 
# 读excel文件
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')   # 返回一个DataFrame对象,多维数据结构
print(df)
 
 
df['result'][0] = 1000
print(df)
with pd.ExcelWriter('lemon_cases_new.xlsx') as writer:
    df.to_excel(writer, sheet_name="New", index=False)

三、使用pandas来操作csv文件

1.读取csv文件

案例中的data.log文件内容如下所示:

TestID,TestTime,Success
0,149,0
1,69,0
2,45,0
3,18,1
4,18,1

import pandas as pd
# 读取csv文件
# 方法一,使用read_csv读取,列与列之间默认以逗号分隔(推荐方法)
# a.第一行为列名信息
csvframe = pd.read_csv('data.log')
 
# b.第一行没有列名信息,直接为数据
csvframe = pd.read_csv('data.log', header=None)
 
# c.第一行没有列名信息,直接为数据,也可以指定列名
csvframe = pd.read_csv('data.log', header=None, names=["Col1", "Col2", "Col3"])
 
 
# 方法二,read_table,需要指定列与列之间分隔符为逗号
csvframe = pd.read_table('data.log', sep=",")

2.解答面试题

import pandas as pd
 
# 1.读取csv文件
csvframe = pd.read_csv('data.log')
 
# 2.选择Success为0的行
new_csvframe = csvframe.loc[csvframe["Success"] == 0]
result_csvframe = new_csvframe["TestTime"]
avg_result = round(sum(result_csvframe)/len(result_csvframe), 2)
print("TestTime最小值为:{}\nTestTime最大值为:{}\nTestTime平均值为:{}".
      format(min(result_csvframe), max(result_csvframe), avg_result))

四、总结

  • 在数据分析、数据可视化领域,Pandas的应用极其广泛;在大规模数据、多种类数据处理上效率非常高
  • 在软件测试领域也有应用,但如果仅仅用excel来存放测试数据,使用Pandas就有点“杀鸡焉用宰牛刀”的感觉,那么建议使用特定的模块来处理(比如openpyxl

到此这篇关于Python自动化测试-使用Pandas来高效处理测试数据的文章就介绍到这了,更多相关Python Pandas 处理测试数据内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


参考资料

相关文章

  • Python动态赋值的易错点总结

    发布:2019-06-20

    在本文中我们给大家整理了关于Python动态赋值的陷阱的相关知识点内容,需要的朋友们学习下。


  • 实例分析python SVM 线性分类模型的实现

    发布:2020-02-26

    这篇文章主要介绍了python SVM 线性分类模型的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • python装饰器实现对异常代码出现进行自动监控的实现方法

    发布:2021-04-15

    这篇文章主要介绍了python装饰器实现对异常代码出现进行自动监控的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下


  • Python实现新年愿望代码雨效果

    发布:2023-03-05

    新的一年又要来了,这篇文章主要为大家详细介绍了如何利用Python实现新年愿望代码雨的动画效果。文中的示例代码讲解详细,感兴趣的可以动手尝试一下


  • python语音识别whisper的使用

    发布:2023-03-24

    本文主要介绍了python语音识别whisper的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • 解决python3 安装不了PIL的问题

    发布:2022-04-24

    今天小编就为大家分享一篇解决python3 安装不了PIL的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧


  • Linux CentOS7下安装python3的步骤详解

    发布:2019-11-22

    在CentOS7下,默认安装的就是python2.7,下面通过本文给大家分享Linux CentOS7下安装python3 的方法,需要的朋友参考下吧


  • python不以科学计数法输出的实例方法总结

    发布:2019-10-29

    今天小编就为大家分享一篇python 不以科学计数法输出的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧


网友讨论