当前位置:主页 > java教程 > SparkStreaming整合Kafka

SparkStreaming整合Kafka过程详解

发布:2023-04-23 11:15:01 59


本站收集了一篇相关的编程文章,网友郭凉夏根据主题投稿了本篇教程内容,涉及到SparkStreaming整合Kafka、SparkStreaming、Kafka、SparkStreaming整合Kafka相关内容,已被542网友关注,涉猎到的知识点内容可以在下方电子书获得。

SparkStreaming整合Kafka

Spark Streaming连接kafka 的两种方式

Receiver based Approah

  • KafkaUtils.createDstream基于接收器方式,消费Kafka数据,已淘汰
  • Receiver作为Task运行在Executor等待数据,一个Receiver效率低,需要开启多个,再手动合并数据,很麻烦
  • Receiver挂了,可能丢失数据,需要开启WAL(预写日志)保证数据安全,效率低
  • 通过Zookeeper来连接kafka,offset存储再zookeeper中
  • spark消费的时候为了保证数据不丢也会保存一份offset,可能出现数据不一致

Direct Approach

  • KafkaUtils.createDirectStream直连方式,streaming中每个批次的job直接调用Simple Consumer API获取对应Topic数据
  • Direct方式直接连接kafka分区获取数据,提高了并行能力
  • Direct方式调用kafka低阶API,offset自己存储和维护,默认由spark维护在checkpoint中
  • offset也可以自己手动维护,保存在mysql/redis中
// 从kafka加载数据
val kafkaParams = Map[String, Object](
  "bootstrap.servers" -> "hadoop102:9092",//kafka集群地址
  "key.deserializer" -> classOf[StringDeserializer],//key的反序列化规则
  "value.deserializer" -> classOf[StringDeserializer],//value的反序列化规则
  "group.id" -> "sparkdemo",//消费者组名称
  //earliest:表示如果有offset记录从offset记录开始消费,如果没有从最早的消息开始消费
  //latest:表示如果有offset记录从offset记录开始消费,如果没有从最后/最新的消息开始消费
  //none:表示如果有offset记录从offset记录开始消费,如果没有就报错
  "auto.offset.reset" -> "latest",
  "auto.commit.interval.ms"->"1000",//自动提交的时间间隔
  "enable.auto.commit" -> (true: java.lang.Boolean)//是否自动提交
)
val topics = Array("spark_kafka")//要订阅的主题
//使用工具类从Kafka中消费消息
val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
  ssc,
  LocationStrategies.PreferConsistent, //位置策略,使用源码中推荐的
  ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) //消费策略,使用源码中推荐的
)

代码展示

自动提交偏移量

object kafka_Demo01 {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("kafka_Demo01")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc, Seconds(5))
    ssc.checkpoint("data/ckp")
    // 从kafka加载数据
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "hadoop102:9092",//kafka集群地址
      "key.deserializer" -> classOf[StringDeserializer],//key的反序列化规则
      "value.deserializer" -> classOf[StringDeserializer],//value的反序列化规则
      "group.id" -> "sparkdemo",//消费者组名称
      //earliest:表示如果有offset记录从offset记录开始消费,如果没有从最早的消息开始消费
      //latest:表示如果有offset记录从offset记录开始消费,如果没有从最后/最新的消息开始消费
      //none:表示如果有offset记录从offset记录开始消费,如果没有就报错
      "auto.offset.reset" -> "latest",
      "auto.commit.interval.ms"->"1000",//自动提交的时间间隔
      "enable.auto.commit" -> (true: java.lang.Boolean)//是否自动提交
    )
    val topics = Array("spark_kafka")//要订阅的主题
    //使用工具类从Kafka中消费消息
    val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent, //位置策略,使用源码中推荐的
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) //消费策略,使用源码中推荐的
    )
    // 处理消息
    val infoDS = kafkaDS.map(record => {
      val topic = record.topic()
      val partition = record.partition()
      val offset = record.offset()
      val key = record.key()
      val value = record.value()
      val info: String = s"""topic:${topic}, partition:${partition}, offset:${offset}, key:${key}, value:${value}"""
      info
    })
    // 输出
    infoDS.print()
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(true, true)
  }
}

手动提交

提交代码

// 处理消息
//注意提交的时机:应该是消费完一小批就该提交一次offset,而在DStream一小批的体现是RDD
kafkaDS.foreachRDD(rdd => {
  rdd.foreach(record => {
    val topic = record.topic()
    val partition = record.partition()
    val offset = record.offset()
    val key = record.key()
    val value = record.value()
    val info: String = s"""topic:${topic}, partition:${partition}, offset:${offset}, key:${key}, value:${value}"""
    info
    println("消费" + info)
  })
  //获取rdd中offset相关的信息:offsetRanges里面就包含了该批次各个分区的offset信息
  val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
  //提交
  kafkaDS.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
  println("当前批次的数据已消费并手动提交")
})

完整代码

object kafka_Demo02 {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("kafka_Demo01")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc, Seconds(5))
    ssc.checkpoint("data/ckp")
    // 从kafka加载数据
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "hadoop102:9092",//kafka集群地址
      "key.deserializer" -> classOf[StringDeserializer],//key的反序列化规则
      "value.deserializer" -> classOf[StringDeserializer],//value的反序列化规则
      "group.id" -> "sparkdemo",//消费者组名称
      //earliest:表示如果有offset记录从offset记录开始消费,如果没有从最早的消息开始消费
      //latest:表示如果有offset记录从offset记录开始消费,如果没有从最后/最新的消息开始消费
      //none:表示如果有offset记录从offset记录开始消费,如果没有就报错
      "auto.offset.reset" -> "latest",
//      "auto.commit.interval.ms"->"1000",//自动提交的时间间隔
      "enable.auto.commit" -> (false: java.lang.Boolean)//是否自动提交
    )
    val topics = Array("spark_kafka")//要订阅的主题
    //使用工具类从Kafka中消费消息
    val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent, //位置策略,使用源码中推荐的
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) //消费策略,使用源码中推荐的
    )
    // 处理消息
    //注意提交的时机:应该是消费完一小批就该提交一次offset,而在DStream一小批的体现是RDD
    kafkaDS.foreachRDD(rdd => {
      rdd.foreach(record => {
        val topic = record.topic()
        val partition = record.partition()
        val offset = record.offset()
        val key = record.key()
        val value = record.value()
        val info: String = s"""topic:${topic}, partition:${partition}, offset:${offset}, key:${key}, value:${value}"""
        info
        println("消费" + info)
      })
      //获取rdd中offset相关的信息:offsetRanges里面就包含了该批次各个分区的offset信息
      val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      //提交
      kafkaDS.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
      println("当前批次的数据已消费并手动提交")
    })
    // 输出
    kafkaDS.print()
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(true, true)
  }
}

到此这篇关于SparkStreaming整合Kafka过程详解的文章就介绍到这了,更多相关SparkStreaming整合Kafka内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


参考资料

相关文章

  • spring kafka @KafkaListener详解与使用过程

    发布:2023-03-29

    这篇文章主要介绍了spring-kafka @KafkaListener详解与使用,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下


  • 基于SpringBoot 使用 Flink 收发Kafka消息的示例详解

    发布:2023-03-01

    这篇文章主要介绍了基于SpringBoot 使用 Flink 收发Kafka消息,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下


  • Spring Boot 中使用@KafkaListener并发批量接收消息的完整代码

    发布:2023-03-29

    kakfa是我们在项目开发中经常使用的消息中间件。由于它的写性能非常高,因此,经常会碰到读取Kafka消息队列时拥堵的情况,这篇文章主要介绍了Spring Boot 中使用@KafkaListener并发批量接收消息,需要的朋友可以参考下


  • Java Flink与kafka实现实时告警功能过程

    发布:2023-04-25

    这篇文章主要介绍了Java Flink与kafka实现实时告警功能,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下


  • kafka消费不到数据的排查过程

    发布:2023-04-10

    这篇文章主要介绍了kafka消费不到数据的排查过程,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教


  • @KafkaListener 如何使用

    发布:2023-03-29

    这篇文章主要介绍了@KafkaListener 如何使用,本文通过图文实例代码相结合给大家详细讲解,文末给大家介绍了kafka的消费者分区分配策略,需要的朋友可以参考下


  • spring kafka框架中@KafkaListener 注解解读和使用案例

    发布:2023-03-29

    Kafka 目前主要作为一个分布式的发布订阅式的消息系统使用,也是目前最流行的消息队列系统之一,这篇文章主要介绍了kafka @KafkaListener 注解解读,需要的朋友可以参考下


  • spring-Kafka中的@KafkaListener深入源码解读

    发布:2023-03-28

    本文主要通过深入了解源码,梳理从spring启动到真正监听kafka消息的这套流程,从spring启动开始处理@KafkaListener,本文结合实例流程图给大家讲解的非常详细,需要的朋友参考下


网友讨论