为网友们分享了相关的编程文章,网友郗天籁根据主题投稿了本篇教程内容,涉及到SpringBoot、Flink、收发Kafka消息、SpringBoot、收发Kafka消息、SpringBoot Flink 收发Kafka消息相关内容,已被901网友关注,下面的电子资料对本篇知识点有更加详尽的解释。
SpringBoot Flink 收发Kafka消息
前言
这周学习下Flink相关的知识,学习到一个读写Kafka消息的示例, 自己动手实践了一下,别人示例使用的是普通的Java Main方法,没有用到spring boot. 我们在实际工作中会使用spring boot。 因此我做了些加强, 把流程打通了,过程记录下来。
准备工作
首先我们通过docker安装一个kafka服务,参照Kafka的官方知道文档
https://developer.confluent.io/tutorials/kafka-console-consumer-producer-basics/kafka.html主要的是有个docker-compose.yml文件
--- version: '2' services: zookeeper: image: confluentinc/cp-zookeeper:7.3.0 hostname: zookeeper container_name: zookeeper ports: - "2181:2181" environment: ZOOKEEPER_CLIENT_PORT: 2181 ZOOKEEPER_TICK_TIME: 2000 broker: image: confluentinc/cp-kafka:7.3.0 hostname: broker container_name: broker depends_on: - zookeeper ports: - "29092:29092" environment: KAFKA_BROKER_ID: 1 KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181' KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:9092,PLAINTEXT_HOST://localhost:29092 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1 KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
docker compose up -d
就可以把kafka docker 环境搭起来,
使用以下命令,创建一个flink.kafka.streaming.source的topic
docker exec -t broker kafka-topics --create --topic flink.kafka.streaming.source --bootstrap-server broker:9092
然后使用命令,就可以进入到kafka机器的命令行
docker exec -it broker bash
官方文档示例中没有-it, 运行后没有进入broker的命令行,加上来才可以。这里说明下
Flink我们打算直接采用开发工具运行,暂时未搭环境,以体验为主。
开发阶段
首先需要引入的包POM文件
<properties> <jdk.version>1.8</jdk.version> <maven.compiler.source>8</maven.compiler.source> <maven.compiler.target>8</maven.compiler.target> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <spring-boot.version>2.7.7</spring-boot.version> <flink.version>1.16.0</flink.version> </properties> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-dependencies</artifactId> <version>${spring-boot.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter</artifactId> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <optional>true</optional> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId> <version>${flink.version}</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients</artifactId> <version>${flink.version}</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java</artifactId> <version>${flink.version}</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka</artifactId> <version>${flink.version}</version> <scope>provided</scope> </dependency> </dependencies>
这里我们使用Java8, 本来想使用Spring Boot 3的,但是Spring Boot 3 最低需要Java17了, 目前Flink支持Java8和Java11,所以我们使用Spring Boot 2, Java 8来开发。
spring-boot-starter 我们就一个命令行程序,所以用这个就够了
lombok 用来定义model
flink-java, flink-clients, flink-streaming-java 是使用基本组件, 缺少flink-clients编译阶段不会报错,运行的时候会报java.lang.IllegalStateException: No ExecutorFactory found to execute the application.
flink-connector-kafka 是连接kafka用
我们这里把provided, 打包的时候不用打包flink相关组件,由运行环境提供。但是IDEA运行的时候会报java.lang.NoClassDefFoundError: org/apache/flink/streaming/util/serialization/DeserializationSchema,
在运行的configuration上面勾选上“add dependencies with provided scope to classpath”可以解决这个问题。
主要代码
@Component @Slf4j public class KafkaRunner implements ApplicationRunner { @Override public void run(ApplicationArguments args) throws Exception { try{ /**************************************************************************** * Setup Flink environment. ****************************************************************************/ // Set up the streaming execution environment final StreamExecutionEnvironment streamEnv = StreamExecutionEnvironment.getExecutionEnvironment(); /**************************************************************************** * Read Kafka Topic Stream into a DataStream. ****************************************************************************/ //Set connection properties to Kafka Cluster Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:29092"); properties.setProperty("group.id", "flink.learn.realtime"); //Setup a Kafka Consumer on Flnk FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<> ("flink.kafka.streaming.source", //topic new SimpleStringSchema(), //Schema for data properties); //connection properties //Setup to receive only new messages kafkaConsumer.setStartFromLatest(); //Create the data stream DataStream<String> auditTrailStr = streamEnv .addSource(kafkaConsumer); //Convert each record to an Object DataStream<Tuple2<String, Integer>> userCounts = auditTrailStr .map(new MapFunction<String,Tuple2<String,Integer>>() { @Override public Tuple2<String,Integer> map(String auditStr) { System.out.println("--- Received Record : " + auditStr); AuditTrail at = new AuditTrail(auditStr); return new Tuple2<String,Integer>(at.getUser(),at.getDuration()); } }) .keyBy(0) //By user name .reduce((x,y) -> new Tuple2<String,Integer>( x.f0, x.f1 + y.f1)); //Print User and Durations. userCounts.print(); /**************************************************************************** * Setup data source and execute the Flink pipeline ****************************************************************************/ //Start the Kafka Stream generator on a separate thread System.out.println("Starting Kafka Data Generator..."); Thread kafkaThread = new Thread(new KafkaStreamDataGenerator()); kafkaThread.start(); // execute the streaming pipeline streamEnv.execute("Flink Windowing Example"); } catch(Exception e) { e.printStackTrace(); } } }
简单说明下程序
DataStream auditTrailStr = streamEnv
.addSource(kafkaConsumer);
就是接通了Kafka Source
Thread kafkaThread = new Thread(new KafkaStreamDataGenerator()); kafkaThread.start();
这段代码是另外开一个线程往kafka里面去发送文本消息
我们在这个示例中就是一个线程发,然后flink就读出来,然后统计出每个用户的操作时间。
auditTrailStr.map 就是来进行统计操作。
运行效果
可以看到Kafka一边发送,然后我们就一边读出来,然后就统计出了每个用户的时间。
总结
本文只是简单的打通了几个环节,对于flink的知识没有涉及太多,算是一个环境入门。后面学习更多的以后我们再深入些来记录flink. 示例代码会放到 https://github.com/dengkun39/redisdemo.git spring-boot-flink 文件夹。