《Python机器学习(第2版)》是由机械工业出版社出版的一本关于Python方面的书籍,作者是塞巴斯蒂安·拉施卡(Seb,主要介绍了关于Python、机器学习方面的知识内容,目前在Python类书籍综合评分为:9.2分。
书籍介绍
《Python机器学习(第2版)》将机器学习背后的基本理论与应用实践联系起来,通过这种方式让读者聚焦于如何正确地提出问题、解决问题。书中讲解了如何使用Python的核心元素以及强大的机器学习库,同时还展示了如何正确使用一系列统计模型。
在本书第1版的基础上,作者对第2版进行了大量更新和扩展,纳入*近的开源技术,包括scikit-learn、Keras和TensorFlow,提供了使用Python构建高效的机器学习与深度学习应用的必要知识与技术。
通过阅读本书,你将学到:
· 探索并理解数据科学、机器学习与深度学习的主要框架
· 通过机器学习模型与神经网络对你的数据提出新的疑问
· 在机器学习中使用*近Python开源库的强大功能
· 掌握如何使用TensorFlow库来实现深度神经网络
· 在可访问的Web应用中嵌入你的机器学习模型
· 使用回归分析预测连续目标的结果
· 使用聚类发现数据中的隐藏模式与结构
· 使用深度学习技术分析图片
· 使用情感分析深入研究文本与社交媒体数据
机器学习与预测分析正在改变企业和其他组织的运作方式,本书将带领读者进入预测分析的世界。全书共16章,除了简要介绍机器学习及Python在机器学习中的应用,还系统讲述了数据分类、数据预处理、模型优化、集成学习、回归、聚类、神经网络、深度学习等内容。本书将机器学习背后的基本理论与应用实践联系起来,通过这种方式让读者聚焦于如何正确地提出问题、解决问题。本书讲解了如何使用Python的核心元素以及强大的机器学习库,同时还展示了如何正确使用一系列统计模型。本书可作为学习数据科学的初学者及想进一步拓展数据科学领域认识的读者的参考书。同样,本书也适合计算机等相关专业的本科生、研究生阅读。