当前位置:主页 > 计算机电子书 > 大数据分析 > 数据挖掘下载
基于不确定性建模的数据挖掘(英文版)

基于不确定性建模的数据挖掘(英文版) PDF 高清完整版

  • 更新:2021-09-16
  • 大小:40.56MB
  • 类别:数据挖掘
  • 作者:秦曾昌
  • 出版:浙江大学出版社
  • 格式:PDF

  • 资源介绍
  • 相关推荐

基于不确定性建模的数据挖掘(英文版)

作者:秦曾昌,汤永川 著

出版时间:2013年版

《基于不确定性建模的数据挖掘(英文版)》的英文简介如下: Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise,incomplete or noisy. Uncertainty Modeling for Data Mining A Label Semantics Approach introduces label semantics, a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing anduncertainty reasoning. 《基于不确定性建模的数据挖掘(英文版)》由秦曾昌、汤永川著。

目录

  • 1Introduction
  • 1.1Types of Uncertainty
  • 1.2Uncertainty Modeling and Data Mining
  • 1.3Related Works
  • References
  • 2Induction and Learning
  • 2.1Introduction
  • 2.2Machine Learning
  • 2.2.1Searching in Hypothesis Space
  • 2.2.2Supervised Learning
  • 2.2.3Unsupervised Learning
  • 2.2.4Instance-Based Learning
  • 2.3Data Mining and Algorithms
  • 2.3.1Why Do We Need Data Mining
  • 2.3.2How Do We do Data Mining
  • 2.3.3Artificial Neural Networks
  • 2.3.4Support Vector Machines
  • 2.4Measurement of Classifiers
  • 2.4.1ROC Analysis for Classification
  • 2.4.2Area Under the ROC Curve
  • 2.5Summary
  • References
  • 3Label Semantics Theory
  • 3.1Uncertainty Modeling with Labels
  • 3.1.1Fuzzy Logic
  • 3.1.2Computing with Words
  • 3.1.3Mass Assignment Theory
  • 3.2Label Semantics
  • 3.2.1Epistemic View of Label Semantics
  • 3.2.2Random Set Framework
  • 3.2.3Appropriateness Degrees
  • 3.2.4Assumptions for Data Analysis
  • 3.2.5Linguistic Translation
  • 3.3Fuzzy Discretization
  • 3.3.1Percentile-Based Discretization
  • 3.3.2Entropy-Based Discretization
  • 3.4Reasoning with Fuzzy Labels
  • 3.4.1Conditional Distribution Given Mass Assignments
  • 3.4.2Logical Expressions of Fuzzy Labels
  • 3.4.3Linguistic Interpretation of Appropriate Labels
  • 3.4.4Evidence Theory and Mass Assignment
  • 3.5Label Relations
  • 3.6Summary
  • References
  • 4Linguistic Decision Trees for Classification
  • 4.1Introduction
  • 4.2Tree Induction
  • 4.2.1Entropy
  • 4.2.2Soft Decision Trees
  • 4.3Linguistic Decision for Classification
  • 4.3.1Branch Probability
  • 4.3.2Classification by LDT
  • 4.3.3Linguistic ID3 Algorithm
  • 4.4Experimental Studies
  • 4.4.1Influence of the Threshold
  • 4.4.2Overlapping Between Fuzzy Labels
  • 4.5Comparison Studies
  • 4.6Merging of Branches
  • 4.6.1Forward Merging Algorithm
  • 4.6.2Dual-Branch LDTs
  • 4.6.3Experimental Studies for Forward Merging
  • 4.6.4ROC Analysis for Forward Merging
  • 4.7Linguistic Reasoning
  • 4.7.1Linguistic Interpretation of an LDT
  • 4.7.2Linguistic Constraints
  • 4.7.3Classification of Fuzzy Data
  • 4.8Summary
  • References
  • ……
  • 5 Linguistic Decision Trees for Prediction
  • 6 Bayesian Methods Based on Label Semantics
  • 7 Unsupervised Learning with Label Semantics
  • 8 Linguistic FOIL and Multiple Attribute Hierarchy for Decision Making
  • 9 A prototype Theory Interpretation of Label Semantics
  • 10 Prototype Theory for Learning
  • 11 Prototype-Based Rule Systems
  • 12 Information Cells and Information Cell Mixture Models

资源下载

资源下载地址1:https://pan.baidu.com/s/1SrQ1K7Yp9cMUVLfTM5ETkA

相关资源

网友留言