当前位置:主页 > python教程 > Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5中NumPy模块的使用图文教程

发布:2020-03-10 17:07:31 130


给寻找编程代码教程的朋友们精选了Python相关的编程文章,网友璩新荣根据主题投稿了本篇教程内容,涉及到Python3.5、NumPy模块、Python3.5基础之NumPy模块的使用图文与实例详解相关内容,已被836网友关注,如果对知识点想更进一步了解可以在下方电子资料中获取。

Python3.5基础之NumPy模块的使用图文与实例详解

本文实例讲述了Python3.5基础之NumPy模块的使用。分享给大家供大家参考,具体如下:

1、简介

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

2、多维数组——ndarray

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

 

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

 

#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu

import numpy as np

#1.创建ndarray
#创建一维数组
n1 = np.array([1,2,3,4])
print(n1)

#属性--ndim:维度;dtype:元素类型;shape:数组形状;
# size:数组元素总个数,shape值相乘得到
print("n1维度:",n1.ndim)
print("n1元素类型:",n1.dtype)
print("n1数组形状:",n1.shape)
print("n1数组元素总个数:",n1.size)

#创建二维数组
n2 = np.array([
  [1,2,3,4],
  [5,6,7,8]
])

print(n2)
print("n2维度:",n2.ndim)
print("n2元素类型:",n2.dtype)

#创建三维数组
n3 = np.array([
  [
    [1,2,3,4],
    [5,6,7,8]
  ],
  [
    [10,20,30,40],
    [50,60,70,80]
  ]
])

print(n3)
print("n3数组形状:",n3.shape)
print("n3数组元素总个数:",n3.size)

#2.通过函数创建数组
z = np.zeros((3,2))   #创建指定形状的数组,数值由零填充
print(z)
print(z.dtype)

o = np.ones((2,4))   #创建指定形状的数组,数值由1填充
print(o)

e = np.empty((2,3,2))  #创建指定形状的数组,数值由未初始化的垃圾值填充
print(e)

#3.通过函数计算的方式去创建数组
#一个参数,区间左闭右开,默认起始值为0,步长为1
np1 = np.arange(10)
print(np1)

#两个参数(起始值,终止值),区间左闭右开,默认步长为1
np2 = np.arange(2,10)
print(np2)

#三个参数(起始值,终止值,步长),区间左闭右开,步长为2
np3 = np.arange(2,10,2)
print(np3)

#倒序创建数组元素
np4 = np.arange(10,2,-1)
print(np4)

#全闭区间,参数(起始值,终止值,元素个数),等差数列
np5 = np.linspace(0,10,5)
print(np5)

#全闭区间,以10为底数参数为指数(起始值,终止值,元素个数),等比数列
np6 = np.logspace(0,2,5)
print(np6)

#生成随机数的数组
np7 = np.random.random((2,3))
print(np7)
 

运行结果:

[1 2 3 4]
n1维度: 1
n1元素类型: int32
n1数组形状: (4,)
n1数组元素总个数: 4
[[1 2 3 4]
 [5 6 7 8]]
n2维度: 2
n2元素类型: int32
[[[ 1  2  3  4]
  [ 5  6  7  8]]

 [[10 20 30 40]
  [50 60 70 80]]]
n3数组形状: (2, 2, 4)
n3数组元素总个数: 16
[[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]
float64
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
[[[  1.02548961e-305   5.40165714e-067]
  [  1.05952696e-153   9.69380992e+141]
  [  2.17151199e+214   4.34975848e-114]]

 [[  2.08064175e-115   1.91431714e+227]
  [  6.42897811e-109   1.26088822e+232]
  [  9.51634286e-114   5.45764552e-306]]]
[0 1 2 3 4 5 6 7 8 9]
[2 3 4 5 6 7 8 9]
[2 4 6 8]
[10  9  8  7  6  5  4  3]
[  0.    2.5   5.    7.5  10. ]
[   1.            3.16227766   10.           31.6227766   100.        ]
[[ 0.55980469  0.99477652  0.82310732]
 [ 0.97239333  0.1409895   0.57213264]]

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

#修改ndarray形状
np8 = np.arange(0,20,2)
print(np8)
print(np8.size)

np9 = np8.reshape(2,5)
print(np9)
print(np9.size)

#reshape函数是对被修改数组的一个拷贝,共享同一内存,
# 修改其中一个数组会影响里一个
np9[1][2] = 50
print(np8)
print(np9)

# -1表示第二维自动根据元素个数计算
np10 = np8.reshape(5,-1)
print(np10)

#shape直接修改原来数组的形状
np8.shape=(2,-1)
print(np8)

运行结果:

[ 0  2  4  6  8 10 12 14 16 18]
10
[[ 0  2  4  6  8]
 [10 12 14 16 18]]
10
[ 0  2  4  6  8 10 12 50 16 18]
[[ 0  2  4  6  8]
 [10 12 50 16 18]]
[[ 0  2]
 [ 4  6]
 [ 8 10]
 [12 50]
 [16 18]]
[[ 0  2  4  6  8]
 [10 12 50 16 18]]

Numpy基本操作说明

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。


参考资料

相关文章

  • Python3.5 强化学习视频课程

    发布:2021-04-07

    Python3.5 强化学习视频课程 下载地址: https://pan.baidu.com/s/1OpBWXfp_V7Z6FpUrmNdL6g 提取码:5e43 这次给大家带来 Python3.5怎么配置OpenCV3.2, Python3.5配置OpenCV3.2的注意事项有哪些,下面就是实战案例,一起来看一下。 1.OpenCV下载 首先创建一个空的文件夹,进入文件夹执行如下命令,如我创建的文件夹是opencv-python cd opencv-pythongit clone https://git


  • windows10安装python3.5 pip3图文详解

    发布:2020-03-05

    这次给大家带来在windows10里python3.5 pip3应该如何安装,在windows10里python3.5 pip3安装的注意事项有哪些,下面就是实战案例,一起来看一下。


  • win10下python3.5.2、tensorflow和matplotlib安装教程

    发布:2018-09-19

    今天小编就为大家分享一篇关于python爬虫常用库的安装及其环境配置的文章,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧


  • Python3.5 Pandas模块中Series用法详解

    发布:2019-06-15

    这篇文章主要介绍了Python3.5 Pandas模块之Series用法,结合实例形式分析了Python3.5中Pandas模块的Series结构原理、创建、获取、运算等相关操作技巧与注意事项,需要的朋友可以参考下


  • 多版本python python2和python3共存方法

    发布:2019-08-05

    这篇文章主要为大家详细介绍了python多版本的安装方法,解决python2和python3共存以及pip共存问题,具有一定的参考价值,感兴趣的小伙伴们可以参考一下


网友讨论