当前位置:主页 > python教程 > 如何通过雪花算法用Python实现一个简单的发号器

通过雪花(snowflake)算法用Python实现一个简单的发号器示例代码

发布:2020-02-19 19:14:51 165


给寻找编程代码教程的朋友们精选了Python相关的编程文章,网友扶博涛根据主题投稿了本篇教程内容,涉及到Python、雪花算法、snowflake、如何通过雪花算法用Python实现一个简单的发号器相关内容,已被108网友关注,相关难点技巧可以阅读下方的电子资料。

如何通过雪花算法用Python实现一个简单的发号器

实现一个简单的发号器

根据snowflake算法的原理实现一个简单的发号器,产生不重复、自增的id。

1.snowflake算法的简单描述

如何通过雪花算法用Python实现一个简单的发号器

这里的snowflake算法是用二进制的,有64位。其中41位的时间戳表示:当前时间戳减去某个设定的起始时间,10位标识表示:不同的机器、数据库的标识ID等等,序列号为每秒或每毫秒内自增的id。

我做的时候没有用位运算去实现,而是做了一个十进制的,16位的(当时项目要求是16位的)。但是实现发号器的基本策略是一样的,通过时间戳和标识来防止重复,通过序列号实现自增。当然啦,重点不是发号器多少位,而是根据项目的实际情况,利用snowflake算法的原理,实现一个适合自己项目的发号器。

2.Python实现

时间戳:9位,起始时间为2018-01-01 00:00:00 ,时间戳为当前时间减去起始时间。时间戳有9为,可用时间为 999999999/(606024*365)≈31(年)。

标识ID:2位,我用的时候比较简单,只是涉及一个数据库的情况,所以用一张数据表对应一个标识ID,可用100张表。

序列号:5位,我时间戳用的是秒级的,但是5位是10万个序列号,经过测试在一秒内是完全够用的。

所以时间戳、标识ID、序列号的位数也没规定说一定要多少,根据自己项目的实际来即可。

代码如下:

import time
class MySnow:
  def __init__(self,dataID):
    self.start = int(time.mktime(time.strptime('2018-01-01 00:00:00', "%Y-%m-%d %H:%M:%S")))
    self.last = int(time.time())
    self.countID = 0
    self.dataID = dataID  # 数据ID,这个自定义或是映射

  def get_id(self):
    # 时间差部分
    now = int(time.time())
    temp = now-self.start
    if len(str(temp)) < 9: # 时间差不够9位的在前面补0
      length = len(str(temp))
      s = "0" * (9-length)
      temp = s + str(temp)
    if now == self.last:
      self.countID += 1  # 同一时间差,序列号自增
    else:
      self.countID = 0  # 不同时间差,序列号重新置为0
      self.last = now
    # 标识ID部分
    if len(str(self.dataID)) < 2:
      length = len(str(self.dataID))
      s = "0" * (2-length)
      self.dataID = s + str(self.dataID)
    # 自增序列号部分
    if self.countID == 99999: # 序列号自增5位满了,睡眠一秒钟
      time.sleep(1)
    countIDdata = str(self.countID)
    if len(countIDdata) < 5: # 序列号不够5位的在前面补0
      length = len(countIDdata)
      s = "0"*(5-length)
      countIDdata = s + countIDdata
    id = str(temp) + str(self.dataID) + countIDdata
    return id

使用方法:

snow = MySnow(dataID="00")
print(snow.get_id())

其中dataID即为标识ID,countID为自增序列号。dataID可以一个通过自定义的映射表获得,这个视实际的项目情况而定。

3.关于并发

首先,直接用这个发号器是不能进行并发操作,会产生重复的id。如果真的要进行并发,那么就要权衡一下并发和位数的哪个更重要了!

拿实际例子来说吧,比如我并发的目的是为了节省时间,让程序更快的跑完,这时候为了并发,我把dataID中拿出一位来,标识不同的子进程,这样可以防止产生重复的id。但是实际上这用了位数去换取时间,如果是id位数比较少的情况,比如16位的,dataID比较少,我个人认为这样是不值得的,有些奢侈。这时候便是位数比并发重要啦。

当时如果位数充裕,比如20位的,需要并发就并发啦。

还有一种实现并发的方法,就是给发号器加锁,发号的时候加锁,发完了解锁。这个我没有试过,有兴趣的可以试一下哈哈。但是我有个疑惑啊,就是不断加锁和解锁切换,带来的时间和资源开销会不会很大呢。


参考资料

相关文章

  • python2.7安装opencv-python很慢且总是失败问题

    发布:2023-03-28

    这篇文章主要介绍了python2.7安装opencv-python很慢且总是失败问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教


  • python os.chown() 方法及作用

    发布:2020-02-21

    介绍了pythonos.chown() 方法的定义以及使用方法


  • Python实现不一样的猜数字游戏的示例代码

    发布:2023-04-21

    大家知道“猜数字”这个游戏吗?顾名思义就是一个人想一个数字,另一个人猜。本文就来用Python实现一款不一样的猜数字游戏,感兴趣的可以了解一下


  • Python readline()和readlines()函数实现按行读取文件

    发布:2023-04-08

    本文主要介绍了Python readline()和readlines()函数实现按行读取文件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • 一文带你了解Python与svg之间的操作

    发布:2023-03-11

    svgwrite是一个 Python 库,用于生成简单的 SVG 图片。它提供了一组类似于绘图的 API,使用者可以在 SVG 画布上画线、矩形、圆等图形。本文主要介绍了如何利用svgwrite进行SVG图片的操作,需要的可以参考一下


  • 7个流行的Python强化学习算法及代码实现详解

    发布:2023-03-11

    目前流行的强化学习算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。这些算法已被用于在游戏、机器人和决策制定等各种应用中,本文我们将对其做一个简单的介绍,感兴趣的可以学习一下


  • 利用Python爬虫爬取NBA数据功能实例分享

    发布:2020-03-07

    这篇文章主要介绍了Python实现爬虫爬取NBA数据功能,涉及Python针对URL模块、字符串、列表遍历、Excel写入等相关操作技巧,需要的朋友可以参考下


  • python识别爬虫的实例方法

    发布:2019-11-02

    输入式验证码,推荐使用python第三方库tesserocr;滑动式验证码,可使用seleniium;宫格验证码,使用selenium模拟即可。


网友讨论