当前位置:主页 > python教程 > 如何用sklearn进行对数据标准化、归一化以及将数据还原

用sklearn进行对数据标准化、归一化以及将数据还原详解

发布:2019-07-25 23:06:15 277


本站收集了一篇相关的编程文章,网友屠嘉致根据主题投稿了本篇教程内容,涉及到sklearn、数据标准化、归一化、如何用sklearn进行对数据标准化、归一化以及将数据还原相关内容,已被316网友关注,涉猎到的知识点内容可以在下方电子书获得。

如何用sklearn进行对数据标准化、归一化以及将数据还原

在对模型训练时,为了让模型尽快收敛,一件常做的事情就是对数据进行预处理。

这里通过使用sklearn.preprocess模块进行处理。

一、标准化和归一化的区别

归一化其实就是标准化的一种方式,只不过归一化是将数据映射到了[0,1]这个区间中。

标准化则是将数据按照比例缩放,使之放到一个特定区间中。标准化后的数据的均值=0,标准差=1,因而标准化的数据可正可负。

二、使用sklearn进行标准化和标准化还原

原理:

使用sklearn进行对数据标准化、归一化以及将数据还原的方法

即先求出全部数据的均值和方差,再进行计算。

最后的结果均值为0,方差是1,从公式就可以看出。

但是当原始数据并不符合高斯分布的话,标准化后的数据效果并不好。

导入模块

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt

通过生成随机点可以对比出标准化前后的数据分布形状并没有发生变化,只是尺度上缩小了。

cps = np.random.random_integers(0, 100, (100, 2))
 
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
 
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])
 
ax1.scatter(cps[:, 0], cps[:, 1])
ax2.scatter(std_cps[:, 0], std_cps[:, 1])
 
plt.show()

使用sklearn进行对数据标准化、归一化以及将数据还原的方法

sklearn.preprocess.StandardScaler的使用:

先是创建对象,然后调用fit_transform()方法,需要传入一个如下格式的参数作为训练集。

X : numpy array of shape [n_samples,n_features]Training set.
data = np.random.uniform(0, 100, 10)[:, np.newaxis]
ss = StandardScaler()
std_data = ss.fit_transform(data)
origin_data = ss.inverse_transform(std_data)
print('data is ',data)
print('after standard ',std_data)
print('after inverse ',origin_data)
print('after standard mean and std is ',np.mean(std_data), np.std(std_data))

通过invers_tainsform()方法就可以得到原来的数据。

打印结果如下:

可以看到生成的数据的标准差是1,均值接近0。

data is [[15.72836992]
 [62.0709697 ]
 [94.85738359]
 [98.37108557]
 [ 0.16131774]
 [23.85445883]
 [26.40359246]
 [95.68204855]
 [77.69245742]
 [62.4002485 ]]
after standard [[-1.15085842]
 [ 0.18269178]
 [ 1.12615048]
 [ 1.22726043]
 [-1.59881442]
 [-0.91702287]
 [-0.84366924]
 [ 1.14988096]
 [ 0.63221421]
 [ 0.19216708]]
after inverse [[15.72836992]
 [62.0709697 ]
 [94.85738359]
 [98.37108557]
 [ 0.16131774]
 [23.85445883]
 [26.40359246]
 [95.68204855]
 [77.69245742]
 [62.4002485 ]]
after standard mean and std is -1.8041124150158794e-16 1.0

三、使用sklearn进行数据的归一化和归一化还原

原理:

使用sklearn进行对数据标准化、归一化以及将数据还原的方法

从上式可以看出归一化的结果跟数据的最大值最小值有关。

使用时类似上面的标准化

data = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)

结果:

G:\Anaconda\python.exe G:/python/DRL/DRL_test/DRL_ALL/Grammar.py
data is [[12.19502214]
 [86.49880021]
 [53.10501326]
 [82.30089405]
 [44.46306969]
 [14.51448347]
 [54.59806596]
 [87.87501465]
 [64.35007178]
 [ 4.96199642]]
after Min Max [[0.08723631]
 [0.98340171]
 [0.58064485]
 [0.93277147]
 [0.47641582]
 [0.11521094]
 [0.59865231]
 [1.  ]
 [0.71626961]
 [0.  ]]
origin data is [[12.19502214]
 [86.49880021]
 [53.10501326]
 [82.30089405]
 [44.46306969]
 [14.51448347]
 [54.59806596]
 [87.87501465]
 [64.35007178]
 [ 4.96199642]]
 
Process finished with exit code 0

其他标准化的方法:

上面的标准化和归一化都有一个缺点就是每当来一个新的数据的时候就要重新计算所有的点。

因而当数据是动态的时候可以使用下面的几种计算方法:

1、arctan反正切函数标准化:

使用sklearn进行对数据标准化、归一化以及将数据还原的方法

2、ln函数标准化

使用sklearn进行对数据标准化、归一化以及将数据还原的方法

以上这篇使用sklearn进行对数据标准化、归一化以及将数据还原的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持码农之家。


参考资料

相关文章

  • Python sklearn预测评估指标混淆矩阵计算示例详解

    发布:2023-04-09

    这篇文章主要为大家介绍了Python sklearn预测评估指标混淆矩阵计算示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪


  • Sklearn调优之网格搜索与随机搜索原理详细分析

    发布:2023-04-12

    这篇文章主要介绍了Sklearn调优之网格搜索与随机搜索原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧


  • 实例讲述Python数据预处理

    发布:2020-03-18

    这篇文章主要介绍了Python数据预处理之数据规范化,简单描述了数据规范化的原理、用法及相关操作技巧,需要的朋友可以参考下


  • pandas归一化与反归一化操作实现

    发布:2023-03-10

    本文主要介绍了pandas归一化与反归一化操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas数据归一化以和行删除例程的具体办法介绍

    发布:2019-09-01

    今天小编就为大家分享一篇pandas 数据归一化以及行删除例程的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧


  • Python sklearn 中的 make_blobs() 函数示例详解

    发布:2023-03-27

    make_blobs() 是 sklearn.datasets中的一个函数,这篇文章主要介绍了Python sklearn 中的 make_blobs() 函数,本文结合实例代码给大家介绍的非常详细,需要的朋友可以参考下


  • Python之sklearn数据预处理中fit(),transform()与fit_transform()的区别

    发布:2023-04-23

    这篇文章主要介绍了Python之sklearn数据预处理中fit(),transform()与fit_transform()的区别及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教


  • Python之Sklearn使用入门教程

    Python之Sklearn使用入门教程

    发布:2022-06-27

    为网友们分享了关于Python的教程,这篇文章主要介绍了Python之Sklearn使用入门教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


网友讨论