当前位置:主页 > python教程 > Python使用cv2.canny进行图像边缘检测

Python如何使用cv2.canny进行图像边缘检测

发布:2023-03-13 19:00:01 59


本站精选了一篇相关的编程文章,网友怀靖雁根据主题投稿了本篇教程内容,涉及到Python使用cv2.canny、cv2.canny图像边缘检测、Python图像、Python使用cv2.canny进行图像边缘检测相关内容,已被227网友关注,下面的电子资料对本篇知识点有更加详尽的解释。

Python使用cv2.canny进行图像边缘检测

使用cv2.canny进行图像边缘检测

CV2提供了提取图像边缘的函数canny。

其算法思想如下:

  • 1.使用高斯模糊,去除噪音点(cv2.GaussianBlur)
  • 2.灰度转换(cv2.cvtColor)
  • 3.使用sobel算子,计算出每个点的梯度大小和梯度方向
  • 4.使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应
  • 5.应用双阈值,来确定真实和潜在的边缘
  • 6.通过抑制弱边缘来完成最终的边缘检测

Canny函数的定义如下:

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 

参数含义如下:

  • image:要检测的图像
  • threshold1:阈值1(最小值)
  • threshold2:阈值2(最大值),使用此参数进行明显的边缘检测
  • edges:图像边缘信息
  • apertureSize:sobel算子(卷积核)大小
  • L2gradient :布尔值。
  • True:使用更精确的L2范数进行计算(即两个方向的导数的平方和再开方)
  • False:使用L1范数(直接将两个方向导数的绝对值相加)

L2gradie=True使用的公式

其中较大的阈值2用于检测图像中明显的边缘,但一般情况下检测的效果不会那么完美,边缘检测出来是断断续续的。所以这时候用较小的第一个阈值用于将这些间断的边缘连接起来。

阈值对检测结果的影响

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('d:\\girl.png')
edges = cv2.Canny(img,100,200,apertureSize=3)
edges2 = cv2.Canny(img,100,200,apertureSize=5)
plt.subplot(131),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image1'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(edges2,cmap = 'gray')
plt.title('Edge Image2'), plt.xticks([]), plt.yticks([])
plt.show()

可以看到,在调整threshold1之后,检测出的边缘增多了。

sobel算子对检测结果的影响

sobel默认的算子大小是3,扩大算子,会获得更多的细节,但是也更能提取图像了。

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('d:\\girl.png')
edges = cv2.Canny(img,100,200,apertureSize=3)
edges2 = cv2.Canny(img,100,200,apertureSize=5)
plt.subplot(131),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image1'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(edges2,cmap = 'gray')
plt.title('Edge Image2'), plt.xticks([]), plt.yticks([])
plt.show()

范数对检测结果的影响

L2gradient=True时,检测出的边缘减少了。

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('d:\\girl.png')
edges = cv2.Canny(img,100,200,L2gradient=False)
edges2 = cv2.Canny(img,100,200,L2gradient=True)
plt.subplot(131),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image1'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(edges2,cmap = 'gray')
plt.title('Edge Image2'), plt.xticks([]), plt.yticks([])
plt.show()

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持码农之家。


参考资料

相关文章

  • Python经典案例之图像漫水填充分割详解

    发布:2023-03-13

    图像分割是将图像分成若干具有独特性质的区域并提取感兴趣目标的技术和过程,这篇文章将详细讲解漫水填充分割应用,感兴趣的小伙伴可以了解一下


  • Python基于均值漂移算法和分水岭算法实现图像分割

    发布:2023-03-04

    图像分割是将图像分成若干具有独特性质的区域并提取感兴趣目标的技术和过程。这篇文章将详细讲解基于均值漂移算法和分水岭算法的图像分割,需要的可以参考一下


  • Python图像是否读取成功的判断方法

    发布:2020-06-29

    今天小编就为大家分享一篇Python 判断图像是否读取成功的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧


网友讨论