当前位置:主页 > python教程 > Python OpenCV边缘 角点检测

Python+OpenCV实现边缘检测与角点检测详解

发布:2023-04-21 11:35:02 59


本站精选了一篇相关的编程文章,网友魏敏博根据主题投稿了本篇教程内容,涉及到Python、OpenCV边缘检测、Python、OpenCV角点检测、Python、OpenCV、检测、Python OpenCV边缘 角点检测相关内容,已被384网友关注,如果对知识点想更进一步了解可以在下方电子资料中获取。

Python OpenCV边缘 角点检测

一、边缘检测

Sobel与Canny边缘检测代码如下所示

import cv2 as cv
import matplotlib.pyplot as plt

1.1、读取图像

读取图像的代码如下所示

# 读取图像
img = cv.imread('Lena.jpg')
lenna_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)

1.2、图像转换成灰度图像

图像转换成灰度图像的代码如下所示

# 图像转换成灰度图像
grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

1.3、Sobel算子

Sobel算子的代码如下所示

'''
    Sobel算子
'''
x = cv.Sobel(grayImage, cv.CV_16S, 1, 0)     # 对x求一阶导数
y = cv.Sobel(grayImage, cv.CV_16S, 0, 1)    # 对y求一阶导数

absX = cv.convertScaleAbs(x)
absY = cv.convertScaleAbs(y)

Sobel = cv.addWeighted(absX, 0.5, absY, 0.5, 0)

1.4、Canny算子

Canny算子的代码如下所示

'''
    Canny算子
'''

# 高斯滤波降噪
gaussian = cv.GaussianBlur(grayImage, (3, 3), 0)

# Canny算子
Canny = cv.Canny(gaussian, 50, 100)

1.5、显示正常中文的标签

显示正常中文的标签的代码如下所示

# 显示正常中文的标签
plt.rcParams['font.sans-serif'] = ['SimHei']

titles = [u'(a)原始图像', u'(b)Sobel图像', u'(c)Canny图像']
images = [lenna_img, Sobel, Canny]

for i in range(3):
    plt.subplot(1, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

1.6、边缘检测结果

边缘检测运行结果结果如下所示

Sobel与Canny边缘检测的优缺点

sobel:

1、sobel优点:输出图像(数组)的元素通常具有更大的绝对数值。

2、sobel缺点:由于边缘是位置的标志,对灰度的变化不敏感。

canny:

1、canny优点:法能够尽可能多地标识出图像中的实际边缘;标识出的边缘要与实际图像中的实际边缘尽可能接近。

2、canny缺点:图像中的边缘只能标识一次,并且可能存在的图像噪声不应标识为边缘。

二、角点检测

Susan与Harris角点检测代码如下所示

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

2.1、读取图像

读取图像的代码如下所示

# 读取图像
img = cv.imread('Lena.jpg')
lenna_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)

2.2、图像转换成灰度图像

图像转换成灰度图像的代码如下所示

# 图像转换成灰度图像
grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
grayImage = np.float32(grayImage)

2.3、Harris算子

Harris算子的代码如下所示

'''
    Harris算子
'''
harrisImage = cv.cornerHarris(grayImage, 2, 3, 0.04)

harrisImage = cv.dilate(harrisImage, None)

2.4、设置阈值

设置阈值的代码如下所示

# 设置阈值
thresImage = 0.006 * harrisImage.max()

img[harrisImage > thresImage] = [255, 0, 0]

2.5、Susan算子

Susan算子的代码如下所示

'''
    Susan算子
'''
def img_extraction(image):
    """
        img_extraction 函数利用susan角点检测算法,对图像进行处理
    """
    print("最小灰度值,%d" % image.min())
    print("最大灰度值,%d" % image.max())
    threshold_value = (int(image.max())-int(image.min())) / 10
    print("初始阈值为: %d" % threshold_value)

    offsetX = [
                -1, 0, 1,
            -2, -1, 0, 1, 2,
        -3, -2, -1, 0, 1, 2, 3,
        -3, -2, -1, 0, 1, 2, 3,
        -3, -2, -1, 0, 1, 2, 3,
            -2, -1, 0, 1, 2,
                -1, 0, 1
        ]
    offsetY = [
                -3, -3, -3,
            -2, -2, -2, -2, -2,
        -1, -1, -1, -1, -1, -1, -1,
             0, 0, 0, 0, 0, 0, 0,
             1, 1, 1, 1, 1, 1, 1,
                2, 2, 2, 2, 2,
                   3, 3, 3
        ]

    for i in range(3, image.shape[0] - 3):     # 利用圆形模板遍历图像,计算每点处的USAN值
        for j in range(3, image.shape[1] - 3):
            same = 0
            for k in range(0, 37):
                if abs(int(image[i + int(offsetY[k]), j + int(offsetX[k]), 0]) - int(image[i, j, 0])) < threshold_value:             # 计算相似度
                        same += 1

            if same < 18:
                image[i, j, 0] = 18 - same
                image[i, j, 1] = 18 - same
                image[i, j, 2] = 18 - same
            else:
                image[i, j, 0] = 0
                image[i, j, 1] = 0
                image[i, j, 2] = 0

    return image

def img_revise(image):
    """
        img_revise 函数用于对角点处理后的图像,进行非极大值抑制修正
    """

    X = [-1, -1, -1, 0, 0, 1, 1, 1]     # X轴偏移
    Y = [-1, 0, 1, -1, 1, -1, 0, 1]     # Y轴偏移
    for i in range(4, image.shape[0]-4):
        for j in range(4, image.shape[1]-4):
            flag = 0
            for k in range(0, 8):
                print(i)
                if image[i, j, 0] <= image[int(i + X[k]), int(j + Y[k]), 0]:
                    flag += 1
                    break

            if flag == 0:       # 判断是否是周围8个点中最大的值,是则保留
                image[i, j, 0] = 255
                image[i, j, 1] = 255
                image[i, j, 2] = 255
            else:
                image[i, j, 0] = 0
                image[i, j, 1] = 0
                image[i, j, 2] = 0

    return image

originImage = cv.imread('Lena.jpg')
originImage = cv.cvtColor(originImage, cv.COLOR_BGR2RGB)

2.6、图像转换成灰度图像

图像转换成灰度图像的代码如下所示

# 图像转换成灰度图像
grayImage = np.float32(originImage)

2.7、调用susan角点检测算法

调用susan角点检测算法的代码如下所示

# 调用susan角点检测算法
extraImage = img_extraction(originImage)

2.8、调用img_revise()非极大值抑制修正

调用img_revise()非极大值抑制修正的代码如下所示

# 调用img_revise()非极大值抑制修正
susanImages = img_revise(extraImage)

2.9、显示正常中文的标签

显示正常中文的标签的代码如下所示

# 显示正常中文的标签
plt.rcParams['font.sans-serif'] = ['SimHei']

titles = [u'(a)原始图像', u'(b)Harris图像', u'(c)Susan图像']
images = [lenna_img, img, susanImages]

for i in range(3):
    plt.subplot(1, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

2.10、角点检测结果

角点检测运行结果结果如下所示

Susan与Harris角点检测算子的优缺点

Harris:

Harris优点:

1 旋转不变性,椭圆转过一定角度但是其形状保持不变(特征值保持不变)

2 对于图像灰度的仿射变化具有部分的不变性,由于仅仅使用了图像的一介导数,对于图像灰度平移变化不变;对于图像灰度尺度变化不变

Harris缺点:

1 对尺度很敏感,不具备几何尺度不变性。

2 提取的角点是像素级的

Susan:

Susan优点:大多数的边缘检测算子会随所用模板尺寸的变化而改变其所检测出的边缘的位置,但SUSAN检测算子能提供不依赖于模板尺寸的边缘精度。

以上就是Python+OpenCV实现边缘检测与角点检测详解的详细内容,更多关于Python OpenCV边缘 角点检测的资料请关注码农之家其它相关文章!


参考资料

相关文章

  • python肯德尔系数相关性数据分析示例

    发布:2023-04-08

    这篇文章主要为大家介绍了python肯德尔系数相关性数据分析示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪


  • python2与python3的区别点总结

    发布:2019-06-13

    python2:print语句,语句就意味着可以直接跟要打印的东西而python3:print函数,函数就以为这必须要加上括号才能调用。下面通过本文给大家介绍python2与python3的简单区别,感兴趣的朋友跟随小编一


  • Python中mmap模块处理大文本的操作方法

    发布:2023-04-17

    这篇文章主要介绍了Python中mmap模块(处理大文本),将一个普通文件映射到内存中,通常在需要对文件进行频繁读写时使用,这样用内存映射读写取代I/O缓存读写,以获得较高的性能,需要的朋友可以参考下


  • python中urlparse模块用法实例介绍

    发布:2019-09-05

    这篇文章主要给大家介绍了关于python中urlparse模块介绍与使用的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面随着小编来


  • 基于Python实现抢注大词的提词工具

    发布:2023-03-14

    这篇文章主要为大家详细介绍了如何利用Python语言实现抢注大词的提词工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下


  • Python opencv图像基本操作学习之灰度图转换

    发布:2023-04-07

    使用opencv将图片转为灰度图主要有两种方法,第一种是将彩色图转为灰度图,第二种是在使用OpenCV读取图片的时候直接读取为灰度图,今天通过实例代码讲解Python opencv图像基本操作学习之灰度图转换,感兴趣的朋友一起看看吧


  • 浅谈Python实时检测CPU和GPU的功耗

    发布:2023-03-13

    本文主要介绍了浅谈Python实时检测CPU和GPU的功耗,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Python生成随机数详解流程

    Python生成随机数详解流程

    发布:2022-09-12

    给大家整理了关于Python的教程,生成随机数一般使用的就是random模块下的函数,生成的随机数并不是真正意义上的随机数,而是对随机数的一种模拟。random模块包含各种伪随机数生成函数,以及各种根据概率分布生成随机数的函数。今天我们的目标就是摸清随机数有几种生成方式


网友讨论