给大家整理了相关的编程文章,网友瞿代荷根据主题投稿了本篇教程内容,涉及到numpy 降维、numpy 降维相关内容,已被863网友关注,涉猎到的知识点内容可以在下方电子书获得。
numpy 降维
numpy中的降维方法:
- flat():返回一个iterator,然后去遍历
- flatten():将多维数组拉平,并拷贝一份
- ravel():将多维数组拉平(一维)
- squeeze():除去多维数组中,维数为1的维度,如315降维后3*5
- reshape(-1):多维数组,拉平
- reshape(-1,5),其中-1表示我们不用亲自去指定这一维度的大小,理解为n维
代码示例:
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) c = [] for x in a.flat: c.append(x) print('flat迭代器降一维:\n', c) d = a.flatten() print('flatten方法降一维:\n', d) e = a.ravel() print('ravel方法降一维:\n', e) g = np.squeeze(a) print('squeeze方法降一维:\n', g) f = a.reshape(-1) print('reshape方法降一维:\n', f) a.resize((1, 6)) print('resize方法:\n', a)
结果:
flat迭代器降一维:
[1, 2, 3, 4, 5, 6]
flatten方法降一维:
[1 2 3 4 5 6]
ravel方法降一维:
[1 2 3 4 5 6]
squeeze方法降一维:
[[1 2 3]
[4 5 6]]
reshape方法降一维:
[1 2 3 4 5 6]
resize方法:
[[1 2 3 4 5 6]]
补:NumPy 高维数组降维方法
import numpy as np a = np.arange(64).reshape([4,4,4]) # [[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11] # [12 13 14 15]] # # [[16 17 18 19] # [20 21 22 23] # [24 25 26 27] # [28 29 30 31]] # # [[32 33 34 35] # [36 37 38 39] # [40 41 42 43] # [44 45 46 47]] # # [[48 49 50 51] # [52 53 54 55] # [56 57 58 59] # [60 61 62 63]]] print(a) # 对三维数组a进行降维打击 a_reshape = a.reshape(-1) # [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63] print('reshape方法:\n',a_reshape) c_flat = [] for x in a.flat: c_flat.append(x) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63] print('flat迭代器:\n',c_flat) d_flatten = a.flatten() # [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63] print('flatten方法:\n',d_flatten) e_ravel = a.ravel() # [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63] print('ravel方法:\n',e_ravel) f_resize = a.resize(64) # None resize 没有返回值,改变的是原数组 print('resize方法:\n',f_resize) # [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63] print(a)
到此这篇关于numpy降维方法的文章就介绍到这了,更多相关numpy 降维内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!