当前位置:主页 > python教程 > OpenCV图像梯度算子

OpenCV学习之图像梯度算子详解

发布:2023-04-08 11:00:01 59


给大家整理了相关的编程文章,网友宰绪婷根据主题投稿了本篇教程内容,涉及到OpenCV图像梯度算子、OpenCV 算子、OpenCV图像、OpenCV图像梯度算子相关内容,已被287网友关注,内容中涉及的知识点可以在下方直接下载获取。

OpenCV图像梯度算子

本文是OpenCV图像视觉入门之路的第12篇文章,本文详细的介绍了图像梯度算子的各种操作,例如:Sobel算子Scharr算子laplacian算子等操作。

1.Sobel算子

Sobel算子是一种图像边缘检测算子,它是一种空间滤波器,可以检测图像中的边缘,而梯度运算是一种求导数的方法,可以用来检测图像中的局部变化。

import cv2
import numpy as np
from numpy import unicode
 
if __name__ == '__main__':
    # 不同算子的差异
    img = cv2.imread('D:/Jupyter_Notebooks/0.jpg', cv2.IMREAD_GRAYSCALE)
    sobel_x = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
    sobel_y = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
    sobel_x = cv2.convertScaleAbs(sobel_x)
    sobel_y = cv2.convertScaleAbs(sobel_y)
    sobel_xy = cv2.addWeighted(sobel_x, 0.5, sobel_y, 0.5, 0)
 
    cv2.imshow("sobel_xy", sobel_xy)
 
    img = cv2.imread('D:/Jupyter_Notebooks/0.jpg', cv2.IMREAD_GRAYSCALE)
    cv2.imshow("img", img)
 
    cv2.waitKey(0)
    cv2.destroyAllWindows()

2.Scharr算子

Sobel算子是一种图像边缘检测算法,它可以检测图像中的水平边缘和垂直边缘。它使用卷积核来检测图像中的边缘,并且可以检测出图像中的细微变化。OpenCV是一个计算机视觉库,它提供了一系列的函数,可以用来处理图像,包括Sobel算子。OpenCV提供了一系列的函数,可以用来处理图像,包括Sobel算子,但它也提供了其他的图像处理算法,如Canny边缘检测算法,Hough变换算法等。

import cv2
import numpy as np
from numpy import unicode
 
if __name__ == '__main__':
    img = cv2.imread('D:/Jupyter_Notebooks/0.jpg', cv2.IMREAD_GRAYSCALE)
    scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0)
    scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1)
    scharrx = cv2.convertScaleAbs(scharrx)
    scharry = cv2.convertScaleAbs(scharry)
    scharrxy = cv2.addWeighted(scharrx, 0.5, scharry, 0.5, 0)
 
    cv2.imshow("scharrxy", scharrxy)
 
    img = cv2.imread('D:/Jupyter_Notebooks/0.jpg', cv2.IMREAD_GRAYSCALE)
    cv2.imshow("img", img)
 
    cv2.waitKey(0)
    cv2.destroyAllWindows()

3.laplacian算子

Laplacian算子是一种图像处理技术,它可以用来检测图像中的边缘和轮廓。它是一种二阶微分算子,可以用来检测图像中的边缘,并且可以用来检测图像中的噪声。它的基本原理是,它会计算图像中每个像素点的梯度,并且根据梯度的大小来检测图像中的边缘。

import cv2
import numpy as np
from numpy import unicode
 
if __name__ == '__main__':
    img = cv2.imread('D:/Jupyter_Notebooks/0.jpg', cv2.IMREAD_GRAYSCALE)
    laplacian = cv2.Laplacian(img, cv2.CV_64F)
    laplacian = cv2.convertScaleAbs(laplacian)
 
    cv2.imshow("laplacian", laplacian)
 
    img = cv2.imread('D:/Jupyter_Notebooks/0.jpg', cv2.IMREAD_GRAYSCALE)
    cv2.imshow("img", img)
 
    cv2.waitKey(0)
    cv2.destroyAllWindows()

到此这篇关于OpenCV学习之图像梯度算子详解的文章就介绍到这了,更多相关OpenCV图像梯度算子内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


相关文章

  • OpenCV学习之图像的叠加与混合详解

    发布:2023-04-08

    这篇文章主要为大家详细介绍了OpenCV图像视觉学习中的图像的叠加与混合,文中的示例代码简洁易懂,具有一定的借鉴价值,需要的可以参考一下


  • Python opencv图像基本操作学习之灰度图转换

    发布:2023-04-07

    使用opencv将图片转为灰度图主要有两种方法,第一种是将彩色图转为灰度图,第二种是在使用OpenCV读取图片的时候直接读取为灰度图,今天通过实例代码讲解Python opencv图像基本操作学习之灰度图转换,感兴趣的朋友一起看看吧


  • 详解Python下opencv图像的阈值处理

    发布:2020-02-28

    这篇文章主要介绍了Python下opencv图像阈值处理的使用笔记,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • OpenCV学习之图像形态学处理详解

    发布:2023-04-08

    这篇文章主要为大家详细介绍了OpenCV中图像形态学处理的相关知识,例如:腐蚀操作、膨胀操作、开闭运算、梯度运算、Top Hat Black Hat运算等操作,需要的可以参考一下


  • OpenCV实现图像平滑处理的方法汇总

    发布:2023-04-12

    这篇文章为大家详细介绍了在图像上面进行了图像均值滤波、方框滤波 、高斯滤波、中值滤波、双边滤波、2D卷积等具体操作的方法,需要的可以参考一下


  • OpenCV学习之图像加噪与滤波的实现详解

    发布:2023-04-08

    这篇文章主要为大家详细介绍了OpenCV中图像的加噪与滤波操作的相关资料,文中的示例代码简洁易懂,具有一定的借鉴价值,需要的可以参考一下


  • OpenCV图像处理之图像的二值化解读

    发布:2023-04-02

    这篇文章主要介绍了OpenCV图像处理之图像的二值化解读,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教


  • OpenCV实战记录之基于分水岭算法的图像分割

    发布:2023-03-29

    在机器视觉中,有时需要对产品进行检测和计数,其难点无非是对于产品的图像分割,这篇文章主要给大家介绍了关于OpenCV实战记录之基于分水岭算法的图像分割的相关资料,需要的朋友可以参考下


网友讨论