当前位置:主页 > python教程 > Pandas map(),applymap(),apply()

Pandas中map(),applymap(),apply()函数的使用方法

发布:2023-03-30 09:00:01 59


给大家整理一篇相关的编程文章,网友戴小芬根据主题投稿了本篇教程内容,涉及到Pandas、map()、applymap()、apply()、Pandas map(),applymap(),apply()相关内容,已被115网友关注,内容中涉及的知识点可以在下方直接下载获取。

Pandas map(),applymap(),apply()

将函数应用于pandas对象(pandas.DataFrame,pandas.Series)时,根据所应用的函数类型以及是否将其应用于元素,行或列,使用的方法会有所不同。

指定pandas对象作为NumPy函数的参数

  • 将Pandas对象指定为函数参数
  • 是否将其应用于元素,行或列取决于函数的类型和参数的设置而有所不同
  • Pandas对象中的一些方法

Pandas对象方法的函数应用
元素功能(标量值)

  • 适用于Series的每个元素:map(),apply()
  • 应用于DataFrame的每个元素:applymap()

行和列的功能(一维数组)

  • 应用于DataFrame的每行和每列:apply()

用以下csv文件作为示例进行说明。

a,b,c,d
11,12,13,14
21,22,23,24
31,32,33,34

import pandas as pd
import numpy as np

df = pd.read_csv('./data/06/sample_header.csv')
print(df)
#     a   b   c   d
# 0  11  12  13  14
# 1  21  22  23  24
# 2  31  32  33  34

指定pandas对象作为NumPy函数的参数

可以将Pandas对象指定为NumPy函数的参数。

元素的应用

NumPy的通用函数(ufunc:应用于数组元素的函数)适用于pandas对象的每个元素。

绝对值(fabs()),平方根(sqrt()),log(log())等。

print(np.sqrt(df))
#           a         b         c         d
# 0  3.316625  3.464102  3.605551  3.741657
# 1  4.582576  4.690416  4.795832  4.898979
# 2  5.567764  5.656854  5.744563  5.830952

行/列的应用

如果将pandas对象指定为从NumPy数组的所有元素计算值的函数的参数,则默认情况下它将应用于pandas对象的每列。如果参数轴= 1,则将其应用于每行。

最大值(amax()),最小值(amin()),平均值(mean())等。

print(np.amax(df))
# a    31
# b    32
# c    33
# d    34
# dtype: int64

print(np.mean(df, axis=1))
# 0    12.5
# 1    22.5
# 2    32.5
# dtype: float64

pandas.DataFrame,pandas.Series方法

最大值,最小值,平均值,方差等也被准备为Pandas对象的方法,因此也可以直接使用它们。

同样,在这种情况下,默认情况下也会将其应用于每一列,并且如果参数axis = 1,则会将其应用于每一行。

print(df.max())
# a    31
# b    32
# c    33
# d    34
# dtype: int64

print(df.max(axis=1))
# 0    14
# 1    24
# 2    34
# dtype: int64

Pandas对象方法的函数应用

可以使用pandas对象方法将函数应用于元素,行和列。您可以应用Python内置函数或您定义的函数。

  • 应用于Series的每个元素:map(),apply()
  • 应用于DataFrame的每个元素:applymap()
  • 应用于DataFrame的每行和每列:apply()
  • 应用于DataFrame的特定行/列元素

以上方法都返回一个新的已处理的对象,而原始对象则保持不变。没有像dropna()或fillna()那样的参数,因此,如果想更改原始对象本身时,

df = df.applymap(function)

如上,用原始对象替换新对象并覆盖它。

适用于Series的每个元素:map(),apply()

将Python内置函数,匿名函数(lambda)或def定义的函数传递给map()或apply()的参数。

s = df['a']
print(s)
# 0    11
# 1    21
# 2    31
# Name: a, dtype: int64

f_brackets = lambda x: '[{}]'.format(x)
print(s.map(f_brackets))
# 0    [11]
# 1    [21]
# 2    [31]
# Name: a, dtype: object

def f_str(x):
    return str(x).replace('1', 'One').replace('2', 'Two').replace('3', 'Three').replace('4', 'Four')

print(s.map(f_str))
# 0      OneOne
# 1      TwoOne
# 2    ThreeOne
# Name: a, dtype: object

对于map(),如果将字典dict指定为参数,它将替换为元素。

应用于DataFrame的每个元素:applymap()

将Python的内置函数,匿名函数(lambda)或def定义的函数传递为applymap()的参数。

f_oddeven = lambda x: 'odd' if x % 2 == 1 else 'even'
print(df.applymap(f_oddeven))
#      a     b    c     d
# 0  odd  even  odd  even
# 1  odd  even  odd  even
# 2  odd  even  odd  even

应用于DataFrame的每行和每列:apply()

将适用于一维数组的函数传递给apply()的参数。默认情况下,它应用于每列,如果axis = 1,则应用于每行。

f_maxmin = lambda x: max(x) - min(x)
print(df.apply(f_maxmin))
# a    20
# b    20
# c    20
# d    20
# dtype: int64

print(df.apply(f_maxmin, axis=1))
# 0    3
# 1    3
# 2    3
# dtype: int64

应用于DataFrame的特定行/列元素

由于没有方法仅将功能应用于DataFrame的特定行/列元素,可执行以下方法。

  • 选择行/列并应用带有map()或apply()的功能
  • 覆盖原始行/列
df['b'] = df['b'].map(f_str)
print(df)
#     a         b   c   d
# 0  11    OneTwo  13  14
# 1  21    TwoTwo  23  24
# 2  31  ThreeTwo  33  34

df.iloc[2] = df.iloc[2].map(f_str)
print(df)
#           a         b           c          d
# 0        11    OneTwo          13         14
# 1        21    TwoTwo          23         24
# 2  ThreeOne  ThreeTwo  ThreeThree  ThreeFour

到此这篇关于Pandas中map(),applymap(),apply()函数的使用方法的文章就介绍到这了,更多相关Pandas map(),applymap(),apply()内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


相关文章

  • pandas pd.cut()与pd.qcut()的具体实现

    发布:2023-03-04

    本文主要介绍了pandas pd.cut()与pd.qcut()的具体实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Pandas读取csv的实现

    发布:2023-03-06

    本文主要介绍了Pandas读取csv的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas.DataFrame Series排序的使用(sort_values,sort_index)

    发布:2023-03-28

    本文主要介绍了pandas.DataFrame Series排序的使用(sort_values,sort_index),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas中MultiIndex和对象实际索引不一致解决方法

    发布:2019-11-18

    这篇文章主要介绍了详解pandas中MultiIndex和对象实际索引不一致问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习


  • Pandas数据分析常用函数的使用

    发布:2023-03-07

    本文主要介绍了Pandas数据分析常用函数的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • pandas赋值失败问题解决

    发布:2021-05-24

    这篇文章主要介绍了详解pandas赋值失败问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Pandas通过index选择并获取行和列

    发布:2023-03-28

    本文主要介绍了Pandas通过index选择并获取行和列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Pandas提取含有指定字符串的行(完全匹配,部分匹配)

    发布:2023-03-29

    本文主要介绍了Pandas提取含有指定字符串的行(完全匹配,部分匹配),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


网友讨论