当前位置:主页 > python教程 > Numpy数值积分

Numpy数值积分的实现

发布:2023-03-28 14:00:01 59


为网友们分享了相关的编程文章,网友苍安阳根据主题投稿了本篇教程内容,涉及到Numpy数值积分、Numpy数值积分相关内容,已被411网友关注,相关难点技巧可以阅读下方的电子资料。

Numpy数值积分

连乘连加元素连乘prod, nanprod;元素求和sum, nansum
累加累加cumsum, nancumsum;累乘cumprod, nancumprod

求和

在Numpy中可以非常方便地进行求和或者连乘操作,对于形如 x 0 , x 1 , ⋯   , xn​的数组而言,其求和 ∑xi或者连乘 ∏xi分别通过sumprod实现。

x = np.arange(10)
print(np.sum(x))    # 返回45
print(np.prod(x))   # 返回0

这两种方法均被内置到了数组方法中,

x += 1
x.sum()     # 返回55
x.prod()    # 返回3628800

有的时候数组中可能会出现坏数据,例如

x = np.arange(10)/np.arange(10)
print(x)
# [nan  1.  1.  1.  1.  1.  1.  1.  1.  1.]

其中x[0]由于是0/0,得到的结果是nan,这种情况下如果直接用sum或者prod就会像下面这样

>>> x.sum()
nan
>>> x.prod()
nan

为了避免这种尴尬的现象发生,numpy中提供了nansumnanprod,可以将nan排除后再进行操作

>>> np.nansum(x)
9.0
>>> np.nanprod(x)
1.0

累加和累乘

和连加连乘相比,累加累乘的使用频次往往更高,尤其是累加,相当于离散情况下的积分,意义非常重大。

from matplotlib.pyplot as plt
xs = np.arange(100)/10
ys = np.sin(xs)
ys1 = np.cumsum(ys)/10
plt.plot(xs, ys)
plt.plot(xs, ys1)
plt.show()

效果如图所示

在这里插入图片描述

cumprood可以实现累乘操作,即

x = np.arange(1, 10)
print(np.cumprod(x))
# [     1      2      6     24    120    720   5040  40320 362880]

sum, prod相似,cumprodcumsum也提供了相应的nancumprod, nancumsum函数,用以处理存在nan的数组。

>>> x = np.arange(10)/np.arange(10)
:1: RuntimeWarning: invalid value encountered in true_divide
>>> np.cumsum(x)
array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan])
>>> np.nancumsum(x)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.nancumprod(x)
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

trapz

cumsum操作是比较容易理解的,可以理解为离散化的差分,比如

>>> x = np.arange(5)
>>> y = np.cumsum(x)
>>> print(x)
array([0, 1, 2, 3, 4])
>>> print(y)
array([ 0,  1,  3,  6, 10])

trap为梯形积分求解器,同样对于[0,1,2,3,4]这样的数组,那么稍微对高中知识有些印象,就应该知道[0,1]之间的积分是​,此即梯形积分

>>> np.trapz(x)
8.0

接下来对比一下trapzcumsum作用在 sin ⁡ x \sin x sinx上的效果

from matplotlib.pyplot as plt
xs = np.arange(100)/10
ys = np.sin(xs)
y1 = np.cumsum(ys)/10
y2 = [np.trapz(ys[:i+1], dx=0.1) for i in range(100)]
plt.plot(xs, y1)
plt.plot(xs, y2)
plt.show()

结果如图,可见二者差别极小。

在这里插入图片描述

 到此这篇关于Numpy数值积分的实现的文章就介绍到这了,更多相关Numpy数值积分内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


参考资料

相关文章

网友讨论