当前位置:主页 > python教程 > scipy稀疏数组dok_array

scipy稀疏数组dok_array的具体使用

发布:2023-03-27 10:20:02 59


给网友朋友们带来一篇相关的编程文章,网友傅沛岚根据主题投稿了本篇教程内容,涉及到scipy稀疏数组dok_array、scipy dok_array、scipy稀疏数组dok_array相关内容,已被510网友关注,涉猎到的知识点内容可以在下方电子书获得。

scipy稀疏数组dok_array

dok_array

dok数组就是通过键值对存储的数组,其中key就是矩阵中的坐标元组,value就是对应坐标中的值,是最容易理解的稀疏矩阵存储方案。

>>> import numpy as np
>>> from scipy.sparse import dok_array
>>> dok = dok_array((5, 5), dtype=np.float32)
>>> for i in range(5):
...     for j in range(5):
...         dok[i, j] = i + j    # Update element
...
>>> print(dok.toarray())
[[0. 1. 2. 3. 4.]
 [1. 2. 3. 4. 5.]
 [2. 3. 4. 5. 6.]
 [3. 4. 5. 6. 7.]
 [4. 5. 6. 7. 8.]]

得到结果为

从上面的代码来看,其等价形式如下,唯一的区别是,对于一个全0的矩阵,array必须将所有0都存储下来,而dok数组可以不存储任何有效值。但对于全都不是0的矩阵,dok除了存储矩阵的值之外,还要将矩阵的坐标重新写一边,相当于数据量翻了三倍。

>>> Z = np.zeros([5,5])
>>> for i in range(5):
...     for j in range(5):
...         Z[i, j] = i + j    # Update element
...
>>> print(Z)
[[0. 1. 2. 3. 4.]
 [1. 2. 3. 4. 5.]
 [2. 3. 4. 5. 6.]
 [3. 4. 5. 6. 7.]
 [4. 5. 6. 7. 8.]]

初始化方案

dok仅支持三种初始化方案:

  • dok_array(D) D是一个稀疏数组或2 × D 2\times D2×D数组
  • dok_array(S) S是另一种稀疏数组。
  • dok_array((M, N),dtype='d') 创建一个shape为( M , N ) (M, N)(M,N)的空数组,dtype为数据类型

内置方法

稀疏数组在计算上并不便捷,所以dok_array中内置了下列函数,可以高效地完成计算。

函数expm1, log1p, sqrt, pow, sign
三角函数sin, tan, arcsin, arctan, deg2rad, rad2deg
双曲函数sinh, tanh, arcsinh, arctanh
索引getcol, getrow, nonzero, argmax, argmin, max, min
舍入ceil, floor, trunc
变换conj, conjugate, getH
统计count_nonzero, getnnz, mean, sum
矩阵diagonal, trace
获取属性get_shape, getformat
计算比较multiply, dot, maximum, minimum
转换asformat, asfptype, astype, toarray, todense
转换tobsr, tocoo, tocsc, tocsr, todia, todok, tolil
更改维度set_shape, reshape, resize, transpose
排序sort_indices, sorted_indices
移除元素eliminate_zeros, prune, sum_duplicates
其他copy, check_format, getmaxprint, rint, setdiag

到此这篇关于scipy稀疏数组dok_array的具体使用的文章就介绍到这了,更多相关scipy稀疏数组dok_array内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!


参考资料

相关文章

网友讨论