当前位置:主页 > python教程 > anaconda使用教程(图文)

anaconda用法的图文教程

发布:2019-09-10 21:43:29 90


给寻找编程代码教程的朋友们精选了相关的编程文章,网友卢俊雅根据主题投稿了本篇教程内容,涉及到anaconda、使用教程、anaconda使用教程(图文)相关内容,已被473网友关注,内容中涉及的知识点可以在下方直接下载获取。

anaconda使用教程(图文)

Anaconda是一个面向Python和R编程语言的数据科学和机器学习平台。它的设计目的是使创建和分发项目的过程变得简单、稳定和可跨系统复制,并且可以在Linux、Windows和OSX上使用。

 

anaconda使用教程(图文)

Anaconda是一个基于Python的平台,管理主要的数据科学包,包括panda、scikit-learn、SciPy、NumPy和谷歌的机器学习平台TensorFlow。它与conda(类似于pip的安装工具)、Anaconda导航器(用于GUI体验)和spyder(用于IDE)一起打包。

本教程将介绍Python编程语言的Anaconda、conda和spyder的一些基础知识,并向您介绍开始创建自己的项目所需的概念。(推荐:Python教程)

conda的基本知识

Conda是Anaconda包管理和环境工具,是Anaconda的核心。它很像pip,只是它被设计用于Python、C和R包管理。Conda还以一种类似于virtualenv的方式管理虚拟环境,我在这里已经介绍过了。

确认安装

第一步是确认系统上的安装和版本。下面的命令将检查Anaconda是否已安装,并将版本打印到终端。

$ conda --version

你应该会看到类似于下面的结果。我目前安装了4.4.7版本。

$ conda --version
conda 4.4.7

更新版本

可以使用conda的update参数来更新conda,如下所示。

$ conda update conda

此命令将更新到最新版本的conda。

Proceed ([y]/n)? y

Downloading and Extracting Packages
conda 4.4.8: ########################################################### | 100%
openssl 1.0.2n: ######################################################## | 100%
certifi 2018.1.18: ##################################################### | 100%
ca-certificates 2017.08.26: ############################################ | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

通过再次运行version参数,我们看到我的版本已更新到4.4.8,这是该工具的最新版本。

$ conda --version
conda 4.4.8

创造一个新的环境

要创建一个新的虚拟环境,可以运行下面的一系列命令。

$ conda create -n tutorialConda python=3
$ Proceed ([y]/n)? y

你可以在下面看到安装到新环境中的包。

Downloading and Extracting Packages
certifi 2018.1.18: ##################################################### | 100%
sqlite 3.22.0: ######################################################### | 100%
wheel 0.30.0: ########################################################## | 100%
tk 8.6.7: ############################################################## | 100%
readline 7.0: ########################################################## | 100%
ncurses 6.0: ########################################################### | 100%
libcxxabi 4.0.1: ####################################################### | 100%
python 3.6.4: ########################################################## | 100%
libffi 3.2.1: ########################################################## | 100%
setuptools 38.4.0: ##################################################### | 100%
libedit 3.1: ########################################################### | 100%
xz 5.2.3: ############################################################## | 100%
zlib 1.2.11: ########################################################### | 100%
pip 9.0.1: ############################################################# | 100%
libcxx 4.0.1: ########################################################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use:
# > source activate tutorialConda
#
# To deactivate an active environment, use:
# > source deactivate
#

激活

与virtualenv非常相似,你必须激活新创建的环境。下面的命令将激活Linux上的环境。

source activate tutorialConda
Bradleys-Mini:~ BradleyPatton$ source activate tutorialConda
(tutorialConda) Bradleys-Mini:~ BradleyPatton$

安装包

conda list命令将列出当前安装到项目中的包。你可以使用install命令添加附加包及其依赖项。

$ conda list
# packages in environment at /Users/BradleyPatton/anaconda/envs/tutorialConda:
#
# Name Version Build Channel
ca-certificates 2017.08.26 ha1e5d58_0
certifi 2018.1.18 py36_0
libcxx 4.0.1 h579ed51_0
libcxxabi 4.0.1 hebd6815_0
libedit 3.1 hb4e282d_0
libffi 3.2.1 h475c297_4
ncurses 6.0 hd04f020_2
openssl 1.0.2n hdbc3d79_0
pip 9.0.1 py36h1555ced_4
python 3.6.4 hc167b69_1
readline 7.0 hc1231fa_4
setuptools 38.4.0 py36_0
sqlite 3.22.0 h3efe00b_0
tk 8.6.7 h35a86e2_3
wheel 0.30.0 py36h5eb2c71_1
xz 5.2.3 h0278029_2
zlib 1.2.11 hf3cbc9b_2

要将panda安装到当前环境中,你需要执行下面的shell命令。

$ conda install pandas

它将下载并安装相关的包和依赖项。

The following packages will be downloaded:

package | build
---------------------------|-----------------
libgfortran-3.0.1 | h93005f0_2 495 KB
pandas-0.22.0 | py36h0a44026_0 10.0 MB
numpy-1.14.0 | py36h8a80b8c_1 3.9 MB
python-dateutil-2.6.1 | py36h86d2abb_1 238 KB
mkl-2018.0.1 | hfbd8650_4 155.1 MB
pytz-2017.3 | py36hf0bf824_0 210 KB
six-1.11.0 | py36h0e22d5e_1 21 KB
intel-openmp-2018.0.0 | h8158457_8 493 KB
------------------------------------------------------------
Total: 170.3 MB

The following NEW packages will be INSTALLED:

intel-openmp: 2018.0.0-h8158457_8
libgfortran: 3.0.1-h93005f0_2
mkl: 2018.0.1-hfbd8650_4
numpy: 1.14.0-py36h8a80b8c_1
pandas: 0.22.0-py36h0a44026_0
python-dateutil: 2.6.1-py36h86d2abb_1
pytz: 2017.3-py36hf0bf824_0
six: 1.11.0-py36h0e22d5e_1

通过再次执行list命令,我们可以看到新包安装在虚拟环境中。

$ conda list
# packages in environment at /Users/BradleyPatton/anaconda/envs/tutorialConda:
#
# Name Version Build Channel
ca-certificates 2017.08.26 ha1e5d58_0
certifi 2018.1.18 py36_0
intel-openmp 2018.0.0 h8158457_8
libcxx 4.0.1 h579ed51_0
libcxxabi 4.0.1 hebd6815_0
libedit 3.1 hb4e282d_0
libffi 3.2.1 h475c297_4
libgfortran 3.0.1 h93005f0_2
mkl 2018.0.1 hfbd8650_4
ncurses 6.0 hd04f020_2
numpy 1.14.0 py36h8a80b8c_1
openssl 1.0.2n hdbc3d79_0
pandas 0.22.0 py36h0a44026_0
pip 9.0.1 py36h1555ced_4
python 3.6.4 hc167b69_1
python-dateutil 2.6.1 py36h86d2abb_1
pytz 2017.3 py36hf0bf824_0
readline 7.0 hc1231fa_4
setuptools 38.4.0 py36_0
six 1.11.0 py36h0e22d5e_1
sqlite 3.22.0 h3efe00b_0
tk 8.6.7 h35a86e2_3
wheel 0.30.0 py36h5eb2c71_1
xz 5.2.3 h0278029_2
zlib 1.2.11 hf3cbc9b_2

对于不属于Anaconda存储库的包,可以使用典型的pip命令。由于大多数Python用户都熟悉这些命令,所以我不会在这里讨论这些。

Anaconda Navigator(Anaconda导航器)

Anaconda包含一个基于GUI的导航应用程序,使开发变得容易。它包括spyder IDE和 jupyter notebook作为预装项目。这允许你从GUI桌面环境快速启动一个项目。

anaconda使用教程(图文)

为了从导航器新创建的环境开始工作,我们必须在左边的工具栏下选择我们的环境。

anaconda使用教程(图文)

然后我们需要安装我们想要使用的工具。对我来说,这就是spyder IDE。这是我大部分数据科学工作的地方,对我来说,这是一个高效的Python IDE。只需单击spyder的dock tile上的install按钮。导航器将完成剩下的工作。

anaconda使用教程(图文)

安装之后,你可以从相同的dock tile打开IDE。这将从你的桌面环境启动spyder。

anaconda使用教程(图文)

spyder

anaconda使用教程(图文)

spyder是Anaconda的默认IDE,对于Python中的标准和数据科学项目都非常强大。spyder IDE有一个集成的IPython笔记本、一个代码编辑器窗口和控制台窗口。

anaconda使用教程(图文)

Spyder还包括标准的调试功能和一个变量资源管理器,当事情没有完全按计划进行时,它可以提供帮助。

结论

anaconda是Python中数据科学和机器学习的良好环境。它附带了一套经过精心策划的软件包,旨在为一个强大、稳定和可复制的数据科学平台共同工作。这允许开发人员分发他们的内容,并确保在不同的机器和操作系统上产生相同的结果。它带有内置的工具,使生活变得更简单,就像导航器一样,允许你轻松地创建项目和切换环境。它是我开发算法和创建财务分析项目的首选。我甚至发现我在大多数Python项目中都使用它,因为我熟悉环境。如果你想开始学习Python和数据科学,Anaconda是一个不错的选择。

以上就是anaconda使用教程(图文)的详细内容,更多请关注码农之家其它相关文章!


参考资料

相关文章

  • Spring BeanFactory工厂使用教程

    发布:2023-04-11

    Spring的本质是一个bean工厂(beanFactory)或者说bean容器,它按照我们的要求,生产我们需要的各种各样的bean,提供给我们使用。只是在生产bean的过程中,需要解决bean之间的依赖问题,才引入了依赖注入(DI)这种技术


  • PyCharm添加Anaconda中的虚拟环境Python解释器出现Conda executable is not found错误解决

    发布:2023-04-03

    这篇文章主要给大家介绍了关于PyCharm添加Anaconda中的虚拟环境Python解释器出现Conda executable is not found错误的解决办法,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下


  • Java集合Stream流操作的基本使用教程分享

    发布:2023-03-26

    流操作并不会影响原来的集合,可以简单认为,流操作是把集合中的一个元素逐个复制放到一个首尾相接的流动的水槽中。这篇文章整理了Stream流操作的基本使用,需要的可以参考一下


  • 在anaconda中配置graphviz包的详细过程

    发布:2023-04-15

    graphviz是贝尔实验室开发的一个开源的工具包,它使用一个特定的DSL(领域特定语言):dot作为脚本语言,然后使用布局引擎来解析此脚本,并完成自动布局,这篇文章主要介绍了如何在anaconda中配置graphviz包,需要的朋友可以参考下


  • miniconda3介绍、安装以及使用教程

    发布:2023-04-11

    Miniconda是一款小巧的python环境管理工具,安装包大约只有50M多点,其安装程序中包含conda软件包管理器和Python,下面这篇文章主要给大家介绍了关于miniconda3介绍、安装以及使用的相关资料,需要的朋友可以参考下


  • 如何修改pycharm使用anaconda环境后的pip install安装路径问题

    发布:2023-04-15

    本文主要介绍了如何修改pycharm使用anaconda环境后的pip install安装路径问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Pycharm新手使用教程(图文详解)

    发布:2021-04-20

    这篇文章主要介绍了Pycharm新手使用教程(图文详解),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • SpringMVC Interceptor拦截器使用教程

    发布:2023-03-08

    SpringMVC中拦截器(Interceptor)用于对URL请求进行前置/后置过滤,Interceptor与Filter用途相似,但实现方式不同。Interceptor底层就是基于Spring AOP 面向切面编程实现


网友讨论