当前位置:主页 > java教程 >

Java实现二叉树的深度优先遍历和广度优先遍历算法示例

发布:2022-10-18 08:59:20 170


我们帮大家精选了Java相关的编程文章,网友欧曼寒根据主题投稿了本篇教程内容,涉及到Java、二叉树、深度优先遍历、广度优先遍历、算法相关内容,已被270网友关注,如果对知识点想更进一步了解可以在下方电子资料中获取。

本文实例讲述了Java实现二叉树的深度优先遍历和广度优先遍历算法。分享给大家供大家参考,具体如下:

1. 分析

二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。

深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:

先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。

中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。

后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。

广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。

2. 举例说明

对下图所示的二叉排序树进行遍历,要求使用先序遍历(递归、非递归)、中序遍历(递归、非递归)、后序遍历(递归、非递归)和广度优先遍历。

Java实现二叉树的深度优先遍历和广度优先遍历算法示例

① 参考代码

package BinaryTreeTraverseTest;
import java.util.LinkedList;
import java.util.Queue;
/**
 * 二叉树的深度优先遍历和广度优先遍历
 * @author Fantasy
 * @version 1.0 2016/10/05 - 2016/10/07
 */
public class BinaryTreeTraverseTest {
  public static void main(String[] args) {
  BinarySortTree<Integer> tree = new BinarySortTree<Integer>();
    tree.insertNode(35);
    tree.insertNode(20);
    tree.insertNode(15);
    tree.insertNode(16);
    tree.insertNode(29);
    tree.insertNode(28);
    tree.insertNode(30);
    tree.insertNode(40);
    tree.insertNode(50);
    tree.insertNode(45);
    tree.insertNode(55);
    System.out.print("先序遍历(递归):");
    tree.preOrderTraverse(tree.getRoot());
    System.out.println();
    System.out.print("中序遍历(递归):");
    tree.inOrderTraverse(tree.getRoot());
    System.out.println();
    System.out.print("后序遍历(递归):");
    tree.postOrderTraverse(tree.getRoot());
    System.out.println();
    System.out.print("先序遍历(非递归):");
    tree.preOrderTraverseNoRecursion(tree.getRoot());
    System.out.println();
    System.out.print("中序遍历(非递归):");
    tree.inOrderTraverseNoRecursion(tree.getRoot());
    System.out.println();
    System.out.print("后序遍历(非递归):");
    tree.postOrderTraverseNoRecursion(tree.getRoot());
    System.out.println();
    System.out.print("广度优先遍历:");
    tree.breadthFirstTraverse(tree.getRoot());
  }
}
/**
 * 结点
 */
class Node<E extends Comparable<E>> {
  E value;
  Node<E> left;
  Node<E> right;
  Node(E value) {
    this.value = value;
    left = null;
    right = null;
  }
}
/**
 * 使用一个先序序列构建一棵二叉排序树(又称二叉查找树)
 */
class BinarySortTree<E extends Comparable<E>> {
  private Node<E> root;
  BinarySortTree() {
    root = null;
  }
  public void insertNode(E value) {
    if (root == null) {
      root = new Node<E>(value);
      return;
    }
    Node<E> currentNode = root;
    while (true) {
      if (value.compareTo(currentNode.value) > 0) {
        if (currentNode.right == null) {
          currentNode.right = new Node<E>(value);
          break;
        }
        currentNode = currentNode.right;
      } else {
        if (currentNode.left == null) {
          currentNode.left = new Node<E>(value);
          break;
        }
        currentNode = currentNode.left;
      }
    }
  }
  public Node<E> getRoot(){
    return root;
  }
  /**
   * 先序遍历二叉树(递归)
   * @param node
   */
  public void preOrderTraverse(Node<E> node) {
    System.out.print(node.value + " ");
    if (node.left != null)
      preOrderTraverse(node.left);
    if (node.right != null)
      preOrderTraverse(node.right);
  }
  /**
   * 中序遍历二叉树(递归)
   * @param node
   */
  public void inOrderTraverse(Node<E> node) {
    if (node.left != null)
      inOrderTraverse(node.left);
    System.out.print(node.value + " ");
    if (node.right != null)
      inOrderTraverse(node.right);
  }
  /**
   * 后序遍历二叉树(递归)
   * @param node
   */
  public void postOrderTraverse(Node<E> node) {
    if (node.left != null)
      postOrderTraverse(node.left);
    if (node.right != null)
      postOrderTraverse(node.right);
    System.out.print(node.value + " ");
  }
  /**
   * 先序遍历二叉树(非递归)
   * @param root
   */
  public void preOrderTraverseNoRecursion(Node<E> root) {
    LinkedList<Node<E>> stack = new LinkedList<Node<E>>();
    Node<E> currentNode = null;
    stack.push(root);
    while (!stack.isEmpty()) {
      currentNode = stack.pop();
      System.out.print(currentNode.value + " ");
      if (currentNode.right != null)
        stack.push(currentNode.right);
      if (currentNode.left != null)
        stack.push(currentNode.left);
    }
  }
  /**
   * 中序遍历二叉树(非递归)
   * @param root
   */
  public void inOrderTraverseNoRecursion(Node<E> root) {
    LinkedList<Node<E>> stack = new LinkedList<Node<E>>();
    Node<E> currentNode = root;
    while (currentNode != null || !stack.isEmpty()) {
      // 一直循环到二叉排序树最左端的叶子结点(currentNode是null)
      while (currentNode != null) {
        stack.push(currentNode);
        currentNode = currentNode.left;
      }
      currentNode = stack.pop();
      System.out.print(currentNode.value + " ");
      currentNode = currentNode.right;
    }
  }
  /**
   * 后序遍历二叉树(非递归)
   * @param root
   */
  public void postOrderTraverseNoRecursion(Node<E> root) {
    LinkedList<Node<E>> stack = new LinkedList<Node<E>>();
    Node<E> currentNode = root;
    Node<E> rightNode = null;
    while (currentNode != null || !stack.isEmpty()) {
      // 一直循环到二叉排序树最左端的叶子结点(currentNode是null)
      while (currentNode != null) {
        stack.push(currentNode);
        currentNode = currentNode.left;
      }
      currentNode = stack.pop();
      // 当前结点没有右结点或上一个结点(已经输出的结点)是当前结点的右结点,则输出当前结点
      while (currentNode.right == null || currentNode.right == rightNode) {
        System.out.print(currentNode.value + " ");
        rightNode = currentNode;
        if (stack.isEmpty()) {
          return; //root以输出,则遍历结束
        }
        currentNode = stack.pop();
      }
      stack.push(currentNode); //还有右结点没有遍历
      currentNode = currentNode.right;
    }
  }
  /**
   * 广度优先遍历二叉树,又称层次遍历二叉树
   * @param node
   */
  public void breadthFirstTraverse(Node<E> root) {
    Queue<Node<E>> queue = new LinkedList<Node<E>>();
    Node<E> currentNode = null;
    queue.offer(root);
    while (!queue.isEmpty()) {
      currentNode = queue.poll();
      System.out.print(currentNode.value + " ");
      if (currentNode.left != null)
        queue.offer(currentNode.left);
      if (currentNode.right != null)
        queue.offer(currentNode.right);
    }
  }
}

② 输出结果

先序遍历(递归):35 20 15 16 29 28 30 40 50 45 55
中序遍历(递归):15 16 20 28 29 30 35 40 45 50 55
后序遍历(递归):16 15 28 30 29 20 45 55 50 40 35
先序遍历(非递归):35 20 15 16 29 28 30 40 50 45 55
中序遍历(非递归):15 16 20 28 29 30 35 40 45 50 55
后序遍历(非递归):16 15 28 30 29 20 45 55 50 40 35
广度优先遍历:35 20 40 15 29 50 16 28 30 45 55

希望本文所述对大家java程序设计有所帮助。


相关文章

  • java查找图中两点之间所有路径

    发布:2022-10-08

    给网友们整理关于java的教程,这篇文章主要为大家详细介绍了java查找图中两点之间所有路径,具有一定的参考价值,感兴趣的小伙伴们可以参考一下


  • java==运算符和equals()方法的区别

    发布:2019-06-28

    这篇文章主要介绍了java==运算符和equals()方法的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧


  • Java求质数的几种常用算法总结

    发布:2019-06-11

    这篇文章主要介绍了Java求质数的几种常用算法,结合实例形式分析了三种比较常见的求质数算法原理及相关实现技巧,需要的朋友可以参考下


  • java常用工具类 UUID、Map工具类、XML工具类、数据验证工具类

    发布:2019-05-31

    这篇文章主要为大家详细介绍了java常用工具类,UUID、Map工具类、XML工具类、数据验证工具类,具有一定的参考价值,感兴趣的小伙伴们可以参考一下


  • Java项目安全处理方法

    发布:2022-06-23

    给网友朋友们带来一篇关于Java的教程,这篇文章主要介绍了Java项目安全处理方法,URL中参数显示,sql拼接问题,需要的朋友可以参考下


  • java如何连接并访问activemq

    发布:2020-01-11

    这篇文章主要介绍了java怎么连接并访问activemq,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下


  • Java Swing中JTable渲染器与编辑器的用法详解

    发布:2019-12-17

    这篇文章主要介绍了Java Swing中JTable渲染器与编辑器用法,结合实例形式较为详细的分析了Swing中JTable渲染器与编辑器的功能、使用方法及相关注意事项,需要的朋友可以参考下


  • java输出随机图片示例效果

    发布:2020-03-18

    这篇文章主要介绍了java 实现输出随机图片实例代码的相关资料,需要的朋友可以参考下


网友讨论