python中Sobel算子如何使用

  • 更新时间:2021-07-30 09:32:09
  • 编辑:利修真
给大家整理了相关的编程文章,网友游学博根据主题投稿了本篇教程内容,涉及到Python相关内容,已被585网友关注,下面的电子资料对本篇知识点有更加详尽的解释。

参考资料

正文内容

今天在网上看到《python中Sobel算子如何使用》,觉得应该跟大家分享,把代码做了调试发布出来,觉得好就请收藏下。

python中Sobel算子如何使用

说明

1、Sobel算子根据像素点的上下、左右相邻点的灰度加权差,在边缘达到极值的现象来检测边缘。它具有平滑的噪声功能,并提供更准确的边缘方向信息。由于Sobel算子结合了高斯平滑度和微分求导(分化),因此结果会更具抗噪性,当对精度要求不高时,Sobel算子是一种常用的边缘检测方法。

2、Sobel算子仍然是过滤器,但它有方向。

dst = cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])

实例

# coding=utf-8
import cv2
import numpy as np
 
img = cv2.imread("D:/test/26.png", 0)
 
'''
在Sobel函数的第二个参数这里使用了cv2.CV_16S。
因为OpenCV文档中对Sobel算子的介绍中有这么一句:
“in the case of 8-bit input images it will result in truncated derivatives”。
即Sobel函数求完导数后会有负值,还有会大于255的值。
而原图像是uint8,即8位无符号数,所以Sobel建立的图像位数不够,会有截断。
因此要使用16位有符号的数据类型,即cv2.CV_16S。
在经过处理后,别忘了用convertScaleAbs()函数将其转回原来的uint8形式。
否则将无法显示图像,而只是一副灰色的窗口。convertScaleAbs()的原型为:
dst = cv2.convertScaleAbs(src[, dst[, alpha[, beta]]])
其中可选参数alpha是伸缩系数,beta是加到结果上的一个值。结果返回uint8类型的图片。
由于Sobel算子是在两个方向计算的,最后还需要用cv2.addWeighted(...)函数将其组合起来。
其函数原型为:
dst = cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]])
其中alpha是第一幅图片中元素的权重,beta是第二个的权重,gamma是加到最后结果上的一个值。
'''
 
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
 
absX = cv2.convertScaleAbs(x)# 转回uint8
absY = cv2.convertScaleAbs(y)
 
dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
 
cv2.imshow("orign", img)
cv2.imshow("absX", absX)
cv2.imshow("absY", absY)
 
cv2.imshow("Result", dst)
 
cv2.waitKey(0)
cv2.destroyAllWindows()

以上就是python中Sobel算子的使用,希望对大家有所帮助。

相关教程

  • 查看Python依赖包及其版本号信息的方法

    今天小编就为大家分享一篇查看Python依赖包及其版本号信息的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

    发布时间:2019-09-08

  • python顺序执行多个py文件的方法

    今天小编大家分享一篇python顺序执行多个py文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

    发布时间:2019-09-09

用户留言